(II)證明: 查看更多

 

題目列表(包括答案和解析)

(滿分12分)直線l 與拋物線y2 = 4x 交于兩點(diǎn)A、B,O 為原點(diǎn),且= -4.
(I)       求證:直線l 恒過(guò)一定點(diǎn);
(II)     若 4≤| AB | ≤,求直線l 斜率k 的取值范圍;
(Ⅲ) 設(shè)拋物線的焦點(diǎn)為F,∠AFB = θ,試問(wèn)θ 能否等于120°?若能,求出相應(yīng)的直線l 的方程;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

(本小題滿分12分)

如圖,在邊長(zhǎng)為4的菱形中,.點(diǎn)分別在邊上,點(diǎn)與點(diǎn)不重合,,.沿翻折到的位置,使平面⊥平面

(1)求證:⊥平面;

(2)當(dāng)取得最小值時(shí),請(qǐng)解答以下問(wèn)題:

(i)求四棱錐的體積;

(ii)若點(diǎn)滿足= (),試探究:直線與平面所成角的大小是否一定大于?并說(shuō)明理由.

 

查看答案和解析>>

(本小題滿分12分)

如圖,在三棱錐中,,,,,, 點(diǎn),分別在棱上,且,

   (I)求證:平面;

   (II)當(dāng)的中點(diǎn)時(shí),求與平面所成的角的大;

   (III)是否存在點(diǎn)使得二面角為直二面角?并說(shuō)明理由.

 

查看答案和解析>>

(滿分12分)直線l 與拋物線y2 = 4x 交于兩點(diǎn)A、BO 為原點(diǎn),且= -4.
(I)       求證:直線l 恒過(guò)一定點(diǎn);
(II)     若 4≤| AB | ≤,求直線l 斜率k 的取值范圍;
(Ⅲ) 設(shè)拋物線的焦點(diǎn)為F,∠AFB = θ,試問(wèn)θ 能否等于120°?若能,求出相應(yīng)的直線l 的方程;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

(本小題滿分14分)

如圖,四棱錐PABCD的底面為矩形,側(cè)面PAD是正三角形,且側(cè)面PAD⊥底面ABCD

(I)   求證:平面PAD⊥平面PCD

(II)  試在平面PCD上確定一點(diǎn) E 的位置,使 |\S\UP6(→| 最小,并說(shuō)明理由;

(III) 當(dāng)AD = AB時(shí),求二面角APCD的余弦值.

查看答案和解析>>

 

一、選擇題:本大題共12小題,每小題5分,共60分。

1―6AABCBD   7―12ACDCBD

二、填空題:本大題共4小題,每小題5分,共20分。

13.60°  14.-8  15.    16.6

三、解答題:本大題共6小題,共70分,解答應(yīng)寫(xiě)出文字說(shuō)明,證明過(guò)程或演算步驟。

17.(本小題滿分10分)

   (I)解:因?yàn)?sub>

       由正弦定理得

       所以

       又

       故   5分

   (II)由

       故

          10分

18.(本小題滿分12分)

   (I)解:當(dāng)

       故   1分

       因?yàn)?nbsp;  當(dāng)

       當(dāng)

       故上單調(diào)遞減。   5分

   (II)解:由題意知上恒成立,

       即上恒成立。   7分

       令

       因?yàn)?sub>   9分       

       故上恒成立等價(jià)于

          11分

       解得   12分

19.(本小題滿分12分)

   (I)證明:

          2分

       又

   (II)方法一

       解:過(guò)O作

      

       則O1是ABC截面圓的圓心,且BC是直徑,

       過(guò)O作于M,則M為PA的中點(diǎn),

       連結(jié)O1A,則四邊形MAO1O為矩形,

          8分

       過(guò)O作于E,連EO1­,

       則為二面角O―AC―B的平面角   10分

       在

      

       在

       所以二面角O―AC―B的大小為   12分

       方法二

               同上,   8分

              

              

              

               設(shè)面OAC的法向量為

              

               得

               故

               所以二面角O―AC―B的大小為   12分

        20.(本小題滿分12分)

           (I)解:設(shè)次將球擊破,

            則   5分

           (II)解:對(duì)于方案甲,積分卡剩余點(diǎn)數(shù)

               由已知可得

              

              

              

               故

               故   8分

               對(duì)于方案乙,積分卡剩余點(diǎn)數(shù)

               由已知可得

              

              

              

              

               故

               故   11分

               故

               所以選擇方案甲積分卡剩余點(diǎn)數(shù)最多     12分

        21.(本小題滿分12分)

               解:依題意設(shè)拋物線方程為,

               直線

               則的方程為

              

               因?yàn)?sub>

               即

               故

           (I)若

              

               故點(diǎn)B的坐標(biāo)為

               所以直線   5分

           (II)聯(lián)立

              

               則

               又   7分

               故   9分

               因?yàn)?sub>成等差數(shù)列,

               所以

               故

               將代入上式得

               。   12分

        22.(本小題滿分12分)

           (I)解:

               又

               故   2分

               而

               當(dāng)

               故為增函數(shù)。

               所以的最小值為0   4分

           (II)用數(shù)學(xué)歸納法證明:

               ①當(dāng)

               又

               所以為增函數(shù),即

               則

               所以成立       6分

               ②假設(shè)當(dāng)成立,

               那么當(dāng)

               又為增函數(shù),

              

               則成立。

               由①②知,成立   8分

           (III)證明:由(II)

               得

               故   10分

               則

              

               所以成立   12分

         

         

         

         

         


        同步練習(xí)冊(cè)答案