(1)若為中點.求證:平面, 查看更多

 

題目列表(包括答案和解析)

在平面直角坐標系xoy中,動點P到定點(0,
3
)距離與到定直線:y=
4
3
3
的距離之比為
3
2
.設(shè)動點P的軌跡為C.
(1)寫出C的方程;
(2)設(shè)直線y=kx+1與交于A,B兩點,當|
AB
|=
8
2
5
時,求實數(shù)k
的值.
(3)若點A在第一象限,證明:當k>0時,恒有|
OA
|>|
OB
|.

查看答案和解析>>

在平面直角坐標系xOy中,已知動點P(x,y)(y≤0)到點F(0.-2)的距離為d1,到x軸的距離為d2,且d1-d2=2.
(I)求點P的軌跡E的方程;
(Ⅱ)若A、B是(I)中E上的兩點,
.
OA
.
OB
=-16
,過A、B分別作直線y=2的垂線,垂足分別P、Q.證明:直線AB過定點M,且
.
MP
.
MQ
為定值.

查看答案和解析>>

在平面直角坐標系xOy中,已知直線l:2
2
x-y+3+8
2
=0
和圓C1:x2+y2+8x+F=0.若直線l被圓C1截得的弦長為2
3

(1)求圓C1的方程;
(2)設(shè)圓C1和x軸相交于A、B兩點,點P為圓C1上不同于A、B的任意一點,直線PA、PB交y軸于M、N點.當點P變化時,以MN為直徑的圓C2是否經(jīng)過圓C1內(nèi)一定點?請證明你的結(jié)論;
(3)若△RST的頂點R在直線x=-1上,S、T在圓C1上,且直線RS過圓心C1,∠SRT=30°,求點R的縱坐標的范圍.

查看答案和解析>>

在平面直角坐標系xOy中有兩定點F1(0,
3
)
,F2(0,-
3
)
,若動點M滿足|
MF1
|+|
MF2
|=4
,設(shè)動點M的軌跡為C.
(1)求曲線C的方程;
(2)設(shè)直線l:y=kx+t交曲線C于A、B兩點,交直線l1:y=k1x于點D,若k•k1=-4,證明:D為AB的中點.

查看答案和解析>>

在平面直角坐標系中,已知曲線C上任意一點P到兩個定點F1(-
3
,0)
F2(
3
,0)
的距離之和為4.
(1)求曲線C的方程;
(2)設(shè)過(0,-2)的直線l與曲線C交于A、B兩點,以線段AB為直徑作圓.試問:該圓能否經(jīng)過坐標原點?若能,請寫出此時直線l的方程,并證明你的結(jié)論;若不是,請說明理由.

查看答案和解析>>

1.C   2.D   3.D   4.B   5.C   6.C   7.D   8.B   9.C   1 0.A  11.B   12.B

13.  14.  15.    16.3或5

提示:

1.C  ,故它的虛部為.(注意:復數(shù)的虛部不是而是)

2.D 解不等式,得,∴,

,故

3.D ,∴,∴

4.B  兩式相減得,∴,∴

5.C  令,解得,∴

6.C  由已知有解得

7.D   由正態(tài)曲線的對稱性和,知,即正態(tài)曲線關(guān)于直線對稱,于是,,所以

8.B  圓心到直線的距離最小為0,即直線經(jīng)過圓心,

,∴,∴

9.C  對于A、D,不是對稱軸;對于B,電不是偶函數(shù);對于C,符合要求.

10.A   設(shè)兩個截面圓的圓心分刷為、,公共弦的中點為M,則四邊形為矩形,∴,

11. B  應(yīng)先求出2人坐進20個座位的排法。排除2人相鄰的情況即可。

共有11+12=23個座位,去掉前排中間3個不能入坐的座位,還有20個座位,則2人坐入20個座位的排法有種,排除①兩人坐前排相鄰的12種情況;②兩人坐后排相鄰的22種情況,∴不同排法的種數(shù)有(種).

12.B 拋物線的準線,焦點為,由為直角三角形,知為斜邊,故意,又將代入雙曲線方程得,得,解得,∴離心率為。

13.    展開式中的的系數(shù)是,

14.   ,∴

15.   設(shè)棱長均為2,由圖知的距離相等,而到平面的距離為,故所成角的正弦值為。

               

                     

                       

                           

               

              

16.3或5    作出可行域(如圖),知在直線上,

    ∴,,在直線中,

    令,得,∴坐標為,∴,

    解得或5。

17.解:(1)由,得,…2分

,∵,∴,∴

…………………………………………………………………………4分

,∴………………………………………5分

(2)∵,∴,

……………8分

,∴,∴……………10分

18.解:(1)證明:延長、相交于點,連結(jié)

,且,∴的中點,的中點。

的中點,由三角形中位線定理,有

平面,平面,∴平面…………………6分

(2)(法一)由(1)知平面平面。

的中點,∴取的中點,則有。

,∴

平面,∴在平面上的射影,∴

為平面與平面所成二面角的平面角!10分

∵在中,,,

,即平面與平面所成二面角的大小為!12分

(法二)如圖,∵平面,

平面

的中點為坐標原點,以過且平行的直線為軸,所在的直線為 軸,所在的直線為軸,建立空間直角坐標系。

設(shè),則,,,

,

高考資源網(wǎng)
www.ks5u.com設(shè)為平面的法向量,

   

,可得

又平面的法向量為,設(shè)所成的角為,………………… 8分

,

由圖可知平面與平面所成二面角為銳角。

∴平面與平面所成二面角的大小為………………………………12分

19.解:(1)由已知得,∵,∴

     ∵、是方程的兩個根,∴

,…………………………………………6分

(2)的可能取值為0,100,200,300,400

,

,,

的分布列為:

……………………………………………………10分

………………………12分

20.解:(1)∵,∴,∴

又∵,∴數(shù)列是首項為1,公比為3的等比數(shù)列,。

時,),∴

(2)

時,

時,,①

①-②得:

又∵也滿足上式:∴……………………12分

21.解:的定義域為……………………………………………………1分

(1)

……………………………………………………3分

時,;當時,;當時,。

從而分別在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減

……………………………………………………6分

(2)由(1)知在區(qū)間上的最小值為……………8分

,

所以在區(qū)間上的最大值為…………………12分

22.解(1)將直線的方程代入,

化簡得

,

同步練習冊答案