題目列表(包括答案和解析)
(本題滿分14分)
如圖,四棱錐P—ABCD的底面ABCD為一直角梯形,其中BA⊥AD,CD⊥AD,CD=AD=2AB,PA⊥底面ABCD,E是PC的中點.
(Ⅰ)求證:BE//平面PAD;
(Ⅱ)若BE⊥平面PCD。
(i)求異面直線PD與BC所成角的余弦值;
(ii)求二面角E—BD—C的余弦值.
(本題滿分14分)如圖,四棱錐P -ABCD的底面是矩形,側面PAD是正三角形,
且側面PAD⊥底面ABCD,E 為側棱PD的中點。
⑴求證:PB//平面EAC;
⑵若AD=2AB=2,求直線PB與平面ABCD所成角的正切值;
⑶當為何值時,PB⊥AC ?
(本題滿分14分)如圖,在四棱錐P-ABCD中,PA底面ABCD,DAB為直角,AB‖CD,AD=CD=2AB,E、F分別為PC、CD的中點.
(Ⅰ)試證:CD平面BEF;
(Ⅱ)設PA=k·AB,且二面角E-BD-C的平面角大于,求k的取值范圍.
一、選擇題
1~4 BBCA 5~8 ADCD
二、填空題
9、 10、 = 11、 12. 42 ;
13. 2或 14. 15.
三、解答題
16(本小題滿分12分)
1)
………………4分
2)當單調遞減,故所求區(qū)間為 ………………8分
(3)時
………………12分
17(本題滿分14分)
解:(Ⅰ)由函數的圖象關于原點對稱,得,………1分
∴,∴. ………2分
∴,∴. ……………3分
∴,即. ………………5分
∴. ……………………………6分
(Ⅱ)由(Ⅰ)知,∴.
由 ,∴. …………………8分
0
+
0
ㄋ
極小
ㄊ
極大
ㄋ
∴. …………12分
18
證明:(I)在正中,是的中點,所以.
又,,,所以.
而,所以.所以由,有.
(II)取正的底邊的中點,連接,則.
又,所以.
如圖,以點為坐標原點,為軸,為軸,
建立空間直角坐標系.設,則有,
,,,,,.再設是面的法向量,則有
,即,可設.
又是面的法向量,因此
,
所以,即平面PAB與平面PDC所成二面角為.
(Ⅲ)由(II)知,設與面所成角為,則
所以與面所成角的正弦值為.
19(本題滿分14分)
20解:(I)建立圖示的坐標系,設橢圓方程為依題意,
橢圓方程為………………………………2分
F(-1,0)將x=-1代入橢圓方程得
∴當彗星位于太陽正上方時,二者在圖中的距離為1.5┩.……………………6分
(Ⅱ)由(I)知,A1(-2,0),A2(2,0),
|