題目列表(包括答案和解析)
(本題滿分14分)
已知實(shí)數(shù),曲線與直線的交點(diǎn)為(異于原點(diǎn)),在曲線 上取一點(diǎn),過點(diǎn)作平行于軸,交直線于點(diǎn),過點(diǎn)作平行于軸,交曲線于點(diǎn),接著過點(diǎn)作平行于軸,交直線于點(diǎn),過點(diǎn)作平行于軸,交曲線于點(diǎn),如此下去,可以得到點(diǎn),,…,,… . 設(shè)點(diǎn)的坐標(biāo)為,.
(Ⅰ)試用表示,并證明;
(Ⅱ)試證明,且();
(Ⅲ)當(dāng)時(shí),求證: ().(本題滿分14分)
已知函數(shù)圖象上一點(diǎn)處的切線方程為.
(Ⅰ)求的值;
(Ⅱ)若方程在內(nèi)有兩個(gè)不等實(shí)根,求的取值范圍(其中為自然對數(shù)的底數(shù));
(Ⅲ)令,若的圖象與軸交于,(其中),的中點(diǎn)為,求證:在處的導(dǎo)數(shù).
(本題滿分14分)
已知曲線方程為,過原點(diǎn)O作曲線的切線
(1)求的方程;
(2)求曲線,及軸圍成的圖形面積S;
(3)試比較與的大小,并說明理由。(本題滿分14分)
已知中心在原點(diǎn),對稱軸為坐標(biāo)軸的橢圓,左焦點(diǎn),一個(gè)頂點(diǎn)坐標(biāo)為(0,1)
(1)求橢圓方程;
(2)直線過橢圓的右焦點(diǎn)交橢圓于A、B兩點(diǎn),當(dāng)△AOB面積最大時(shí),求直線方程。
(本題滿分14分)
如圖,在直三棱柱中,,,求二面角的大小。
一、選擇題
1~4 BBCA 5~8 ADCD
二、填空題
9、 10、 = 11、 12. 42 ;
13. 2或 14. 15.
三、解答題
16(本小題滿分12分)
1)
………………4分
2)當(dāng)單調(diào)遞減,故所求區(qū)間為 ………………8分
(3)時(shí)
………………12分
17(本題滿分14分)
解:(Ⅰ)由函數(shù)的圖象關(guān)于原點(diǎn)對稱,得,………1分
∴,∴. ………2分
∴,∴. ……………3分
∴,即. ………………5分
∴. ……………………………6分
(Ⅱ)由(Ⅰ)知,∴.
由 ,∴. …………………8分
0
+
0
ㄋ
極小
ㄊ
極大
ㄋ
∴. …………12分
18
證明:(I)在正中,是的中點(diǎn),所以.
又,,,所以.
而,所以.所以由,有.
(II)取正的底邊的中點(diǎn),連接,則.
又,所以.
如圖,以點(diǎn)為坐標(biāo)原點(diǎn),為軸,為軸,
建立空間直角坐標(biāo)系.設(shè),則有,
,,,,,.再設(shè)是面的法向量,則有
,即,可設(shè).
又是面的法向量,因此
,
所以,即平面PAB與平面PDC所成二面角為.
(Ⅲ)由(II)知,設(shè)與面所成角為,則
所以與面所成角的正弦值為.
19(本題滿分14分)
20解:(I)建立圖示的坐標(biāo)系,設(shè)橢圓方程為依題意,
橢圓方程為………………………………2分
F(-1,0)將x=-1代入橢圓方程得
∴當(dāng)彗星位于太陽正上方時(shí),二者在圖中的距離為1.5┩.……………………6分
(Ⅱ)由(I)知,A1(-2,0),A2(2,0),
|