題目列表(包括答案和解析)
已知的三個內(nèi)角所對的邊分別為,且滿足.
(1)求角的大;
(2)若,的面積為,求的值.
【解析】本試題主要是考查了解三角形中正弦定理和正弦面積公式的求解運用。
(1)因為,利用正弦定理得到C的值。
(2)根據(jù),然后結合余弦定理得到C的值。
已知 的三個內(nèi)角所對的邊分別為,是銳角,且.
(Ⅰ)求的度數(shù);(Ⅱ)若,的面積為,求的值.
已知的三個內(nèi)角所對的邊分別為,且,則角的大小為 .
已知 的三個內(nèi)角所對的邊分別為,是銳角,且.
(Ⅰ)求的度數(shù);
(Ⅱ)若,的面積為,求的值.
一、填空題:本大題共14小題,每小題5分,計70分.
1. 2. 3. 4.25 5. 6.
7. 8.③ 9.6 10.50%(填0.5,都算對)
11. 12.< 13.12 14.或
二、解答題:本大題共6小題,計90分.
15.解:(Ⅰ)當時,點P共有28個,而滿足的點P有19個,
從而所求的概率為………………………………………………………………………(7分)
(Ⅱ)當時,由構成的矩形的面積為,而滿足
的區(qū)域的面積為,故所求的概率為……………………………………(14分)
16.證:(Ⅰ)連接交于,連接.
∵分別是的中點,∴∥且=,∴四邊形是矩形.
∴是的中點………………………………………………………………………………(3分)
又∵是的中點,∴∥……………………………………………………………(5分)
則由,,得∥………………………………………(7分)
(注:利用面面平行來證明的,類似給分)
(Ⅱ) ∵在直三棱柱中,⊥底面,∴⊥.
又∵,即⊥,∴⊥面………………………(9分)
而面,∴⊥……………………………………………………………(12分)
又,∴平面……………………………………………………………(14分)
17. 解:(Ⅰ)由,得
,所以………………………………………………(4分)
則,所以……………………………………………………(7分)
(Ⅱ)方案一:選擇①③.
∵A=30°,a=1,
得,解得b=,則c=…………………(11分)
∴…………………………………(14分)
方案二:選擇②③. 可轉(zhuǎn)化為選擇①③解決,類似給分.
(注:選擇①②不能確定三角形)
18. 解:(Ⅰ),即,
,準線,……………………………………………………(2分)
設⊙C的方程為,將O、F、A三點坐標代入得:
,解得………………………………………………………(4分)
∴⊙C的方程為……………………………………………………(5分)
(Ⅱ)設點B坐標為,則,整理得:
對任意實數(shù)都成立……………………………………………(7分)
∴,解得或,
故當變化時,⊙C經(jīng)過除原點O外的另外一個定點B……………………………(10分)
(Ⅲ)由B、、得,
∴,解得……………………………………………(12分)
又 ,∴………………………………………………………………(14分)
又橢圓的離心率()……………………(15分)
∴橢圓的離心率的范圍是………………………………………………………(16分)
19. (Ⅰ)證:因為對任意正整數(shù),總成立,
令,得,則…………………………………………(1分)
令,得 (1) , 從而 (2),
(2)-(1)得,…………………………………………………………………(3分)
綜上得,所以數(shù)列是等比數(shù)列…………………………………………(4分)
(Ⅱ)正整數(shù)成等差數(shù)列,則,所以,
則……………………………………………………(7分)
①當時,………………………………………………………………(8分)
②當時,…………………………(9分)
③當時,……………………(10分)
(Ⅲ)正整數(shù)成等比數(shù)列,則,則,
所以,……………(13分)
①當,即時,……………………………………………(14分)
②當,即時,………………………………(15分)
③當,即時,………………………………(16分)
20. 解: (Ⅰ)當時,.
因為當時,,,
且,
所以當時,,且……………………………………(3分)
由于,所以,又,
故所求切線方程為,
即…………………………………………………………………(5分)
(Ⅱ) 因為,所以,則
當時,因為,,
所以由,解得,
從而當時, ……………………………………………(6分)
① 當時,因為,,
所以由,解得,
從而當時, …………………………………………(7分)
③當時,因為,
從而 一定不成立………………………………………………………………(8分)
綜上得,當且僅當時,,
故 …………………………………………(9分)
從而當時,取得最大值為…………………………………………………(10分)
(Ⅲ)“當時,”等價于“對恒成立”,
即“(*)對恒成立” ……………………………………(11分)
① 當時,,則當時,,則(*)可化為
,即,而當時,,
所以,從而適合題意………………………………………………………………(12分)
② 當時,.
⑴ 當時,(*)可化為,即,而,
所以,此時要求
…………………………………………………………(13分)
⑵ 當時,(*)可化為,
所以,此時只要求………………………………………………………(14分)
(3)當時,(*)可化為,即,而,
所以,此時要求…………………………………………………………(15分)
由⑴⑵⑶,得符合題意要求.
綜合①②知,滿足題意的存在,且的取值范圍是………………………………(16分)
數(shù)學附加題部分
21.A.解:因為PA與圓相切于點A,所以.而M為PA的中點,
所以PM=MA,則.
又,所以,所以……………………(5分)
在中,由,
即,所以,
從而……………………………………………………………………………(10分)
B.解:,所以=……………………………(5分)
即在矩陣的變換下有如下過程,,
則,即曲線在矩陣的變換下的解析式為……(10分)
C.解:由題設知,圓心,故所求切線的直角坐標方程
為……………………………………………………………………………(6分)
從而所求切線的極坐標方程為………………………………(10分)
D.證:因為,利用柯西不等式,得…………………………(8分)
即………………………………………………………………………(10分)
22.解: (Ⅰ)以A為原點,AB、AC、AP分別為x軸、y軸、z軸建立空間直角坐標系A-xyz,
則A(0,0,0),B(2,0,0),C(0,2,0),E(0,1,0),P(0,0,1),
所以,……………………………(4分)
故異面直線BE與PC所成角的余弦值為……………………………………(5分)
(Ⅱ)作PM⊥BE交BE(或延長線)于M,作CN⊥BE交BE(或延長線)于N,
則存在實數(shù)m、n,使得,即
因為,所以
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com