6.如圖是一個(gè)空間幾何體的主視圖.側(cè)視圖. 俯視圖.如果直角三角形的直角邊長(zhǎng)均為1.那么這 個(gè)幾何體的體積為. 查看更多

 

題目列表(包括答案和解析)

如圖是一個(gè)空間幾何體的主視圖(正視圖)、側(cè)視圖、俯視圖,如果直角三角形的直角邊長(zhǎng)均為1,那么這個(gè)幾何體的體積為
[     ]
A.1
B.
C.
D.

查看答案和解析>>

如圖是一個(gè)空間幾何體的主視圖、左視圖、俯視圖,如果主視圖、左視圖所對(duì)應(yīng)的三角形皆為邊長(zhǎng)為2的正三角形,俯視圖對(duì)應(yīng)的四邊形為正方形,那么這個(gè)幾何體的體積為( 。

查看答案和解析>>

精英家教網(wǎng)如圖是一個(gè)空間幾何體的主視圖、側(cè)視圖、俯視圖,如果三個(gè)直角三角形的面積之和為72,那么這個(gè)幾何體的外接球的表面積的最小值為( 。
A、72πB、144πC、288πD、不能確定

查看答案和解析>>

如圖是一個(gè)空間幾何體的主視圖、左視圖、俯視圖,如果主視圖、左視圖所對(duì)應(yīng)的三角形皆為邊長(zhǎng)為2的正三角形,俯視圖對(duì)應(yīng)的四邊形為正方形,那么這個(gè)幾何體的體積為(    )

  A.  B.      C.   D.不確定

 

 

 

查看答案和解析>>

如圖是一個(gè)空間幾何體的主視圖、左視圖、俯視圖,如果主視圖、左視圖所對(duì)應(yīng)的三角形皆為邊長(zhǎng)為2的正三角形,俯視圖對(duì)應(yīng)的四邊形為正方形,那么這個(gè)幾何體的體積為( )

A.
B.
C.
D.不確定

查看答案和解析>>

一、選擇題:

1C  2.D  3.D  4.C  5. B  6.C   7. C   8.C  9.  A 

1,3,5

二、填空:

13..y=54.8(1+x%)16   14.(0,)  15.   16.

三、解答題:本大題共6小題,共74分,解答時(shí)應(yīng)寫出必要的文字說(shuō)明、證明過(guò)程或演算步驟。

17.解(1)

(2)

    1,3,5

    18.解:(1)當(dāng)時(shí).…………2分

    ,連.

    ⊥面,知⊥面.…………3分

    當(dāng)中點(diǎn)時(shí),中點(diǎn).

    ∵△為正三角形,

    ,∴…………5分

    …………6分

       (2)過(guò),連結(jié),則,

    ∴∠為二面角P―AC―B的平面角,,

    …………8分

        …………10分

    ……12分

    19.解:(1)fx)=-a2x2+c+,……………(1分)

    a,∴∈(0,1,………………………………………(2分)

    x∈(0,1時(shí),[fx)]max=c+,……………………………(3分)

    fx)≤1,則[fx)]max=c+≤1,即c,……………(5分)

    ∴對(duì)任意x∈[0,1],總有fx)≤1成立時(shí),可得c.……(6分)

    (2)∵a,∴>0………………………(7分)

    又拋物線開口向下,fx)=0的兩根在[0,內(nèi),…………(8分)

    …………(11分)

     

    所求實(shí)數(shù)c的取值范圍為

    20.解:(1)當(dāng)時(shí),,不成等差數(shù)列。…(1分)

    當(dāng)時(shí),  ,

    ,  ∴,∴ …………(4分)

    …………………….5分

    (2)………………(6分)

    ……………………(7分)

    ………(8分)

    ,∴……………(10分)

    ,

     ∴的最小值為……………….12分

    21.解:(1)

    ……………………2分

    當(dāng)是增函數(shù)

    當(dāng)是減函數(shù)……………………4分

    ……6分

    (2)因?yàn)?sub>,所以

    ……………………8分

    所以的圖象在上有公共點(diǎn),等價(jià)于…………10分

    解得…………………12分

    22解:(1)由題意:∵|PA|=|PB|且|PB|+|PF|=r=8

    ∴|PA|+|PF|=8>|AF|

    ∴P點(diǎn)軌跡為以A、F為焦點(diǎn)的橢圓…………………………3分

    設(shè)方程為

    ………………………5分

    (2)假設(shè)存在滿足題意的直線l,其斜率存在,設(shè)為k,設(shè)

     

     

     

     


    同步練習(xí)冊(cè)答案