題目列表(包括答案和解析)
已知,函數(shù)
(1)當(dāng)時,求函數(shù)在點(1,)的切線方程;
(2)求函數(shù)在[-1,1]的極值;
(3)若在上至少存在一個實數(shù)x0,使>g(xo)成立,求正實數(shù)的取值范圍。
【解析】本試題中導(dǎo)數(shù)在研究函數(shù)中的運用。(1)中,那么當(dāng)時, 又 所以函數(shù)在點(1,)的切線方程為;(2)中令 有
對a分類討論,和得到極值。(3)中,設(shè),,依題意,只需那么可以解得。
解:(Ⅰ)∵ ∴
∴ 當(dāng)時, 又
∴ 函數(shù)在點(1,)的切線方程為 --------4分
(Ⅱ)令 有
① 當(dāng)即時
(-1,0) |
0 |
(0,) |
(,1) |
||
+ |
0 |
- |
0 |
+ |
|
極大值 |
極小值 |
故的極大值是,極小值是
② 當(dāng)即時,在(-1,0)上遞增,在(0,1)上遞減,則的極大值為,無極小值。
綜上所述 時,極大值為,無極小值
時 極大值是,極小值是 ----------8分
(Ⅲ)設(shè),
對求導(dǎo),得
∵,
∴ 在區(qū)間上為增函數(shù),則
依題意,只需,即
解得 或(舍去)
則正實數(shù)的取值范圍是(,)
如圖,已知點和單位圓上半部分上的動點B.
(1)若,求向量;
(2)求的最大值.
【解析】對于這樣的向量的坐標(biāo)和模最值的求解,利用建立直角坐標(biāo)系的方法可知。
第一問中,依題意,,,
因為,所以,即,
解得,所以
第二問中,結(jié)合三角函數(shù)的性質(zhì)得到最值。
(1)依題意,,(不含1個或2個端點也對)
, (寫出1個即可)
因為,所以,即,
解得,所以.-
(2),
當(dāng)時,取得最大值,
在本次數(shù)學(xué)期中考試試卷中共有10道選擇題,每道選擇題有4個選項,其中只有一個是正確的。評分標(biāo)準(zhǔn)規(guī)定:“每題只選一項,答對得5分,不答或答錯得0分”.某考生每道題都給出一個答案, 且已確定有7道題的答案是正確的,而其余題中,有1道題可判斷出兩個選項是錯誤的,有一道可以判斷出一個選項是錯誤的,還有一道因不了解題意只能亂猜。試求出該考生:
(1)選擇題得滿分(50分)的概率;
(2)選擇題所得分?jǐn)?shù)的數(shù)學(xué)期望。
【解析】第一問總利用獨立事件的概率乘法公式得分為50分,10道題必須全做對.在其余的3道題中,有1道題答對的概率為,有1道題答對的概率為,還有1道答對的概率為,
所以得分為50分的概率為:
第二問中,依題意,該考生得分的范圍為{35,40,45,50}
得分為35分表示只做對了7道題,其余各題都做錯,
所以概率為
得分為40分的概率為:
同理求得,得分為45分的概率為:
得分為50分的概率為:
得到分布列和期望值。
解:(1)得分為50分,10道題必須全做對.在其余的3道題中,有1道題答對的概率為,有1道題答對的概率為,還有1道答對的概率為,
所以得分為50分的概率為: …………5分
(2)依題意,該考生得分的范圍為{35,40,45,50} …………6分
得分為35分表示只做對了7道題,其余各題都做錯,
所以概率為 …………7分
得分為40分的概率為: …………8分
同理求得,得分為45分的概率為: …………9分
得分為50分的概率為: …………10分
所以得分的分布列為
35 |
40 |
45 |
50 |
|
|
數(shù)學(xué)期望
已知函數(shù)f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線的斜率為-3.
(1)求f(x)的解析式;
(2)若過點A(2,m)可作曲線y=f(x)的三條切線,求實數(shù)m的取值范圍.
【解析】本試題主要考查了導(dǎo)數(shù)在研究函數(shù)中的運用。第一問,利用函數(shù)f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線的斜率為-3,得到c=-3 ∴a=1, f(x)=x3-3x
(2)中設(shè)切點為(x0,x03-3x0),因為過點A(2,m),所以∴m-(x03-3x0)=(3x02-3)(2-x0)分離參數(shù)∴m=-2x03+6x02-6
然后利用g(x)=-2x3+6x2-6函數(shù)求導(dǎo)數(shù),判定單調(diào)性,從而得到要是有三解,則需要滿足-6<m<2
解:(1)f′(x)=3ax2+2bx+c
依題意
又f′(0)=-3
∴c=-3 ∴a=1 ∴f(x)=x3-3x
(2)設(shè)切點為(x0,x03-3x0),
∵f′(x)=3x2-3,∴f′(x0)=3x02-3
∴切線方程為y-(x03-3x0)=(3x02-3)(x-x0)
又切線過點A(2,m)
∴m-(x03-3x0)=(3x02-3)(2-x0)
∴m=-2x03+6x02-6
令g(x)=-2x3+6x2-6
則g′(x)=-6x2+12x=-6x(x-2)
由g′(x)=0得x=0或x=2
∴g(x)在(-∞,0)單調(diào)遞減,(0,2)單調(diào)遞增,(2,+∞)單調(diào)遞減.
∴g(x)極小值=g(0)=-6,g(x)極大值=g(2)=2
畫出草圖知,當(dāng)-6<m<2時,m=-2x3+6x2-6有三解,
所以m的取值范圍是(-6,2).
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com