由勾股定理得PQ=.-----7分∵點(diǎn)P在線段AB上運(yùn)動(dòng)的過(guò)程中.P與A.B兩點(diǎn)不重合.0<x<2. 查看更多

 

題目列表(包括答案和解析)

先閱讀下面的材料,再解答下面的各題.
在平面直角坐標(biāo)系中,有AB兩點(diǎn),A(x1,y1)、B(x2,y2)兩點(diǎn)間的距離用|AB|表示,則有|AB|=
(x1-x2)2+(y1-y2)2
,下面我們來(lái)證明這個(gè)公式:證明:如圖1,過(guò)A點(diǎn)作X軸的垂線,垂足為C,則C點(diǎn)的橫坐標(biāo)為x1,過(guò)B點(diǎn)作X軸的垂線,垂足為D,則D點(diǎn)的橫坐標(biāo)為x2,過(guò)A點(diǎn)作BD的垂線,垂足為E,則E點(diǎn)的橫坐標(biāo)為x2,縱坐標(biāo)為y1.∴|AE|=|CD|=|x1-x2|
|BE|=|BD|-|DE|=|y2-y1|=||y1-y2|
在Rt△AEB中,由勾股定理得|AB|2=|AE|2+|BE|2=|x1-x2|2+|y1-y2|2
∴|AB|=
(x1-x2)2+(y1-y2)2
(因?yàn)閨AB|表示線段長(zhǎng),為非負(fù)數(shù))
注:當(dāng)A、B在其它象限時(shí),同理可證上述公式成立.
(1)在平面直角坐標(biāo)系中有P(4,6)、Q(2,-3)兩點(diǎn),求|PQ|.
(2)如圖2,直線L1與L2相交于點(diǎn)C(4,6),L1、L2與X軸分別交于B、A兩點(diǎn),其坐標(biāo)B(8,0)、A(1,0),直線L3平行于X軸,與L1、L2分別交于E、D兩點(diǎn),且|DE|=
6
7
,求線段|DA|的長(zhǎng).
精英家教網(wǎng)

查看答案和解析>>

先閱讀下面的材料,再解答下面的各題.
在平面直角坐標(biāo)系中,有AB兩點(diǎn),A(x1,y1)、B(x2,y2)兩點(diǎn)間的距離用|AB|表示,則有|AB|=數(shù)學(xué)公式,下面我們來(lái)證明這個(gè)公式:證明:如圖1,過(guò)A點(diǎn)作X軸的垂線,垂足為C,則C點(diǎn)的橫坐標(biāo)為x1,過(guò)B點(diǎn)作X軸的垂線,垂足為D,則D點(diǎn)的橫坐標(biāo)為x2,過(guò)A點(diǎn)作BD的垂線,垂足為E,則E點(diǎn)的橫坐標(biāo)為x2,縱坐標(biāo)為y1.∴|AE|=|CD|=|x1-x2|
|BE|=|BD|-|DE|=|y2-y1|=||y1-y2|
在Rt△AEB中,由勾股定理得|AB|2=|AE|2+|BE|2=|x1-x2|2+|y1-y2|2
∴|AB|=數(shù)學(xué)公式(因?yàn)閨AB|表示線段長(zhǎng),為非負(fù)數(shù))
注:當(dāng)A、B在其它象限時(shí),同理可證上述公式成立.
(1)在平面直角坐標(biāo)系中有P(4,6)、Q(2,-3)兩點(diǎn),求|PQ|.
(2)如圖2,直線L1與L2相交于點(diǎn)C(4,6),L1、L2與X軸分別交于B、A兩點(diǎn),其坐標(biāo)B(8,0)、A(1,0),直線L3平行于X軸,與L1、L2分別交于E、D兩點(diǎn),且|DE|=數(shù)學(xué)公式,求線段|DA|的長(zhǎng).

查看答案和解析>>

(2003•十堰)先閱讀下面的材料,再解答下面的各題.
在平面直角坐標(biāo)系中,有AB兩點(diǎn),A(x1,y1)、B(x2,y2)兩點(diǎn)間的距離用|AB|表示,則有|AB|=,下面我們來(lái)證明這個(gè)公式:證明:如圖1,過(guò)A點(diǎn)作X軸的垂線,垂足為C,則C點(diǎn)的橫坐標(biāo)為x1,過(guò)B點(diǎn)作X軸的垂線,垂足為D,則D點(diǎn)的橫坐標(biāo)為x2,過(guò)A點(diǎn)作BD的垂線,垂足為E,則E點(diǎn)的橫坐標(biāo)為x2,縱坐標(biāo)為y1.∴|AE|=|CD|=|x1-x2|
|BE|=|BD|-|DE|=|y2-y1|=||y1-y2|
在Rt△AEB中,由勾股定理得|AB|2=|AE|2+|BE|2=|x1-x2|2+|y1-y2|2
∴|AB|=(因?yàn)閨AB|表示線段長(zhǎng),為非負(fù)數(shù))
注:當(dāng)A、B在其它象限時(shí),同理可證上述公式成立.
(1)在平面直角坐標(biāo)系中有P(4,6)、Q(2,-3)兩點(diǎn),求|PQ|.
(2)如圖2,直線L1與L2相交于點(diǎn)C(4,6),L1、L2與X軸分別交于B、A兩點(diǎn),其坐標(biāo)B(8,0)、A(1,0),直線L3平行于X軸,與L1、L2分別交于E、D兩點(diǎn),且|DE|=,求線段|DA|的長(zhǎng).

查看答案和解析>>

(2003•十堰)先閱讀下面的材料,再解答下面的各題.
在平面直角坐標(biāo)系中,有AB兩點(diǎn),A(x1,y1)、B(x2,y2)兩點(diǎn)間的距離用|AB|表示,則有|AB|=,下面我們來(lái)證明這個(gè)公式:證明:如圖1,過(guò)A點(diǎn)作X軸的垂線,垂足為C,則C點(diǎn)的橫坐標(biāo)為x1,過(guò)B點(diǎn)作X軸的垂線,垂足為D,則D點(diǎn)的橫坐標(biāo)為x2,過(guò)A點(diǎn)作BD的垂線,垂足為E,則E點(diǎn)的橫坐標(biāo)為x2,縱坐標(biāo)為y1.∴|AE|=|CD|=|x1-x2|
|BE|=|BD|-|DE|=|y2-y1|=||y1-y2|
在Rt△AEB中,由勾股定理得|AB|2=|AE|2+|BE|2=|x1-x2|2+|y1-y2|2
∴|AB|=(因?yàn)閨AB|表示線段長(zhǎng),為非負(fù)數(shù))
注:當(dāng)A、B在其它象限時(shí),同理可證上述公式成立.
(1)在平面直角坐標(biāo)系中有P(4,6)、Q(2,-3)兩點(diǎn),求|PQ|.
(2)如圖2,直線L1與L2相交于點(diǎn)C(4,6),L1、L2與X軸分別交于B、A兩點(diǎn),其坐標(biāo)B(8,0)、A(1,0),直線L3平行于X軸,與L1、L2分別交于E、D兩點(diǎn),且|DE|=,求線段|DA|的長(zhǎng).

查看答案和解析>>

(2013•益陽(yáng))閱讀材料:如圖1,在平面直角坐標(biāo)系中,A、B兩點(diǎn)的坐標(biāo)分別為A(x1,y1),B(x2,y2),AB中點(diǎn)P的坐標(biāo)為(xp,yp).由xp-x1=x2-xp,得xp=
x1+x2
2
,同理yp=
y1+y2
2
,所以AB的中點(diǎn)坐標(biāo)為(
x1+x2
2
,
y1+y2
2
)
.由勾股定理得AB2=
.
x2-x1
  
.
2
+
.
y2-y1
  
.
2
,所以A、B兩點(diǎn)間的距離公式為AB=
(x2-x1)2+(y2-y1)2

注:上述公式對(duì)A、B在平面直角坐標(biāo)系中其它位置也成立.
解答下列問(wèn)題:
如圖2,直線l:y=2x+2與拋物線y=2x2交于A、B兩點(diǎn),P為AB的中點(diǎn),過(guò)P作x軸的垂線交拋物線于點(diǎn)C.
(1)求A、B兩點(diǎn)的坐標(biāo)及C點(diǎn)的坐標(biāo);
(2)連結(jié)AB、AC,求證△ABC為直角三角形;
(3)將直線l平移到C點(diǎn)時(shí)得到直線l′,求兩直線l與l′的距離.

查看答案和解析>>


同步練習(xí)冊(cè)答案