(II)若函數(shù)在區(qū)間上單調遞增.求實數(shù)的取值范圍. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)已知函數(shù)

(I)若函數(shù)在區(qū)間上存在極值,求實數(shù)a的取值范圍;

(II)當時,不等式恒成立,求實數(shù)k的取值范圍.

(Ⅲ)求證:解:(1),其定義域為,則

,

時,;當時,

在(0,1)上單調遞增,在上單調遞減,

即當時,函數(shù)取得極大值.                                       (3分)

函數(shù)在區(qū)間上存在極值,

 ,解得                                            (4分)

(2)不等式,即

(6分)

,則,

,即上單調遞增,                          (7分)

,從而,故上單調遞增,       (7分)

          (8分)

(3)由(2)知,當時,恒成立,即

,則,                               (9分)

                                                                       (10分)

以上各式相加得,

,

                           

                                        (12分)

 

查看答案和解析>>

已知函數(shù)在區(qū)間(-1,1)上單調遞增,在區(qū)間(1,3)上單調遞減.
(I)若b=-2,求c的值;
(II)當x∈[-1,3]時,函數(shù)f(x)的切線的斜率最小值是-1,求b、c的值.

查看答案和解析>>

已知函數(shù)f(x)="ax3" + x2 - ax (且a).

(I) 若函數(shù)f(x)在{-∞,-1)和(,+∞)上是增函數(shù)¥在()上 是減函數(shù),求a的值;

(II)討論函數(shù)的單調遞減區(qū)間;

(III)如果存在,使函數(shù)h(x)="f(x)+"  ,x (b> - 1),在x = -1處取得最小值,試求b的最大值.

 

查看答案和解析>>

已知函數(shù)
(I)若,求的增區(qū)間;
(II)若,且函數(shù)存在單調遞減區(qū)間,求的取值范圍;
(III)若且關于的方程上恰有兩個不相等的實數(shù)根,求實數(shù)的取值范圍.

查看答案和解析>>

已知函數(shù)

(I)若,求函數(shù)的解析式; 

(II)若,且在區(qū)間上單調遞增,求實數(shù)的取值范圍.

查看答案和解析>>

一、選擇題:本大題共12小題,每小題5分,60.

    BCBBA     BCDCB    DA

二.填空題:本大題共4小題,每小題5分,共20.

13.   2     14 .          15.  4     16.

三、解答題(本大題共6小題,共70分,解答應寫出文字說明、證明過程或演算步驟)

17. (本大題共10分)

解:                       4分

                   8分

故原不等式的解集為                        10分

18. (本小題滿分12分)

解:(1),,且.

,即,又,……..2分

又由,                            5分

   (2)由正弦定理得:,               7分

…………9分

,則.則,

的取值范圍是…………………                   12分

19.(本小題滿分12分)

(1)解:設“射手射擊1次,擊中目標”為事件A

則在3次射擊中至少有兩次連續(xù)擊中目標的概率

=                     7分

(2)解:射手第3次擊中目標時,恰好射擊了4次的概率

                              12分

20. (本小題滿分12分)

(Ⅰ)∵

                                  2分

                             4分

                                                 6分

(Ⅱ)∵函數(shù)在區(qū)間上單調遞增

對一切恒成立

方法1  時成立

時,等價于不等式恒成立

時取到等號,所以

                                                     12分

方法2   設

對稱軸

時,要滿足條件,只要成立

時,,∴

時,只要矛盾

綜合得                             12分

21.(本小題滿分12分)

解:(Ⅰ)設的公差為d,{Bn}的公比為q,則依題意有q>0且

解得d=2,q=2.

所以, 

                                     6分

(Ⅱ)  錯位相減法得:   n=1,2,3…       12分

22.(本小題滿分12分)

解:(I)由

       故的方程為點A的坐標為(1,0)                             2分

       設

       由

           整理                                                      4分

  M的軌跡C為以原點為中心,焦點在x軸上,長軸長為,短軸長為2的橢圓  5分

(II)如圖,由題意知的斜率存在且不為零,                            

       設方程為

       將①代入,整理,得

                        7分

       設、,則  ②

       令由此可得

       由②知

      

      

       即                                                10分

      

      

       解得

       又

       面積之比的取值范圍是                  12分

 

 

 

 

 

 


同步練習冊答案