10.將圓平移后.恰好與直線相切.則實(shí)數(shù)b的值為 查看更多

 

題目列表(包括答案和解析)

將圓平移后,恰好與直線相切,則實(shí)數(shù)b的值為

A.   B.-       C.   D.-

查看答案和解析>>

將圓x2+y2=1按向量
a
=(2,-1)
平移后,恰好與直線x-y+b=0相切,則實(shí)數(shù)b的值為( 。
A、
2
B、-
2
C、
2
D、-
2

查看答案和解析>>

將圓x2+y2=1按向量
a
=(2,-1)
平移后,恰好與直線x-y+b=0相切,則實(shí)數(shù)b的值為( 。
A.
2
B.-
2
C.
2
D.-
2

查看答案和解析>>

將圓x2+y2=1按向量平移后,恰好與直線x-y+b=0相切,則實(shí)數(shù)b的值為( )
A.
B.-
C.
D.-

查看答案和解析>>

將圓x2+y2=1按向量平移后,恰好與直線x-y+b=0相切,則實(shí)數(shù)b的值為( )
A.
B.-
C.
D.-

查看答案和解析>>

一、BCBBA    BCDCB    DB

二.填空題:本大題共4小題,每小題5分,共20分

13        14 ..4        15.      16. (2,3)

三、解答題(本大題共6小題,共70分,解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟)

17. (本大題共10分)

解:由于y=2x是增函數(shù),等價(jià)于

.    ①…………………………………  2分

    (i) 當(dāng)x≥1時(shí),|x+1|-|(x-1)|=2.…………………………………… 5分

∴①式恒成立.

    (ii) 當(dāng)-1<x<1時(shí),|x+1|-|x-1|=2x,

①式化為………………………………… 8分

    (iii)當(dāng)x≤-1時(shí),|x+1|-|x-1|=-2,

①式無(wú)解.

綜上, x取值范圍是.………………………………     10分

18. (本小題滿分12分)

.解:(1),且.

,即,又……..2分

又由,                            5分

   (2)由正弦定理得:,               7分

,

…………9分

,則.則,

的取值范圍是…………………                   12分

19.(本小題滿分12分)

(1)解:設(shè)“射手射擊1次,擊中目標(biāo)”為事件A

則在3次射擊中至少有兩次連續(xù)擊中目標(biāo)的概率

=                     7分

(2)解:射手第3次擊中目標(biāo)時(shí),恰好射擊了4次的概率

                              12分

20. (本小題滿分12分)

(Ⅰ)解:,令,得.          2分

0

極大值

由上圖表知:

的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.

的極大值為.                                5分

   (Ⅱ)證明:對(duì)一切,都有成立

則有

由(Ⅰ)知,的最大值為,

并且成立,                                    8分

當(dāng)且僅當(dāng)時(shí)成立,

函數(shù)的最小值大于等于函數(shù)的最大值,

但等號(hào)不能同時(shí)成立.

    所以,對(duì)一切,都有成立.        12分

21.(本小題滿分12分)

(Ⅰ)解:由已知:對(duì)于,總有 ①成立

   (n ≥ 2)②  

①--②得

均為正數(shù),∴   (n ≥ 2)

∴數(shù)列是公差為1的等差數(shù)列                

又n=1時(shí),, 解得=1

.()                         ……………4分

(Ⅱ)(解法一)由已知  ,      

        

        易得 

        猜想 n≥2 時(shí),是遞減數(shù)列.             

∵當(dāng)

∴在內(nèi)為單調(diào)遞減函數(shù).

.

∴n≥2 時(shí), 是遞減數(shù)列.即是遞減數(shù)列.

, ∴數(shù)列中的最大項(xiàng)為.    ……………   6分

 (解法二) 猜測(cè)數(shù)列中的最大項(xiàng)為

易直接驗(yàn)證;

以下用數(shù)學(xué)歸納法證明n≥3 時(shí),

       (1)當(dāng)時(shí), , 所以時(shí)不等式成立;

       (2)假設(shè)時(shí)不等式成立,即,即,

當(dāng)時(shí), ,

所以,即時(shí)不等式成立.

由(1)(2)知對(duì)一切不小于3的正整數(shù)都成立.

……………      8分

(Ⅲ)(解法一)當(dāng)時(shí),可證:          …………… 10分

   ……………        12分

  (解法二) 時(shí),  ……8分

   

                                             …………… 12分

注:也可分段估計(jì),轉(zhuǎn)化為等比數(shù)列求和(也可加強(qiáng)命題,使用數(shù)學(xué)歸納法)

 

22.(本小題滿分12分)

解:(I)由

       故的方程為點(diǎn)A的坐標(biāo)為(1,0)                      2分

       設(shè)

       由

       整理                                                4分

    動(dòng)點(diǎn)M的軌跡C為以原點(diǎn)為中心,焦點(diǎn)在x軸上,

長(zhǎng)軸長(zhǎng)為,短軸長(zhǎng)為2的橢圓。                               5分

(II)如圖,由題意知的斜率存在且不為零,                            

       設(shè)方程為

       將①代入,整理,得

                  7分

       設(shè)、,

       則  ②

       令

       由此可得

       由②知

      

      

       即                                          10分

      

      

       解得

       又

       面積之比的取值范圍是            12分

 

 

 

 

 

 


同步練習(xí)冊(cè)答案