. 查看更多

 

題目列表(包括答案和解析)

1、集合A={-1,0,1},B={-2,-1,0},則A∪B=
{-2,-1,0,1}

查看答案和解析>>

2、命題“存在x∈R,使得x2+2x+5=0”的否定是
對任意x∈R,都有x2+2x+5≠0

查看答案和解析>>

3、在等差數(shù)列{an}中,a2+a5=19,S5=40,則a10
29

查看答案和解析>>

5、函數(shù)y=a2-x+1(a>0,a≠1)的圖象恒過定點P,則點P的坐標為
(2,2)

查看答案和解析>>

一、填空題:(5’×11=55’)

題號

1

2

3

4

5

6

答案

0

(1,2)

2

題號

7

8

9

10

11

 

答案

4

8.3

②、③

 

二、選擇題:(4’×4=16’)

題號

12

13

14

    1. 20090116

      答案

      A

      C

      B

      B

      三、解答題:(12’+14’+15’+16’+22’=79’)

      16.(理)解:設為橢圓上的動點,由于橢圓方程為,故

      因為,所以

          推出

      依題意可知,當時,取得最小值.而,

      故有,解得

      又點在橢圓的長軸上,即.故實數(shù)的取值范圍是

      17.解:(1)當時,;

      時,;

      時,;(不單獨分析時的情況不扣分)

      時,

      (2)由(1)知:當時,集合中的元素的個數(shù)無限;

      時,集合中的元素的個數(shù)有限,此時集合為有限集.

      因為,當且僅當時取等號,

      所以當時,集合的元素個數(shù)最少.

      此時,故集合

      18.(本題滿分15分,1小題7分,第2小題8

      解:(1)如圖,建立空間直角坐標系.不妨設

      依題意,可得點的坐標,,

          于是,,

         由,則異面直線所成角的

      大小為

      (2)解:連結(jié). 由

      的中點,得;

      ,得

      ,因此

      由直三棱柱的體積為.可得

      所以,四棱錐的體積為

      19.解:(1)根據(jù)三條規(guī)律,可知該函數(shù)為周期函數(shù),且周期為12.

      由此可得,;

      由規(guī)律②可知,,

      ;

      又當時,

      所以,,由條件是正整數(shù),故取

          綜上可得,符合條件.

      (2) 解法一:由條件,,可得

      ,

      因為,,所以當時,,

      ,即一年中的7,8,9,10四個月是該地區(qū)的旅游“旺季”.

      解法二:列表,用計算器可算得

      月份

      6

      7

      8

      9

      10

      11

      人數(shù)

      383

      463

      499

      482

      416

      319

      故一年中的7,8,9,10四個月是該地區(qū)的旅游“旺季”.

      20.解:(1)依條件得: 則無窮等比數(shù)列各項的和為:

           ;

        (2)解法一:設此子數(shù)列的首項為,公比為,由條件得:,

      ,即    

       則 .

      所以,滿足條件的無窮等比子數(shù)列存在且唯一,它的首項、公比均為

      其通項公式為,.

      解法二:由條件,可設此子數(shù)列的首項為,公比為

      ………… ①

      又若,則對每一

      都有………… ②

      從①、②得;

      ;

      因而滿足條件的無窮等比子數(shù)列存在且唯一,此子數(shù)列是首項、公比均為無窮等比子

      數(shù)列,通項公式為,

      (3)以下給出若干解答供參考,評分方法參考本小題閱卷說明:

      問題一:是否存在數(shù)列的兩個不同的無窮等比子數(shù)列,使得它們各項的和互為倒數(shù)?若存在,求出所有滿足條件的子數(shù)列;若不存在,說明理由.

      解:假設存在原數(shù)列的兩個不同的無窮等比子數(shù)列,使它們的各項和之積為1。設這兩個子數(shù)列的首項、公比分別為,其中,則

      因為等式左邊或為偶數(shù),或為一個分數(shù),而等式右邊為兩個奇數(shù)的乘積,還是一個奇數(shù)。故等式不可能成立。所以這樣的兩個子數(shù)列不存在。

      【以上解答屬于層級3,可得設計分4分,解答分6分】

      問題二:是否存在數(shù)列的兩個不同的無窮等比子數(shù)列,使得它們各項的和相等?若存在,求出所有滿足條件的子數(shù)列;若不存在,說明理由.

      解:假設存在原數(shù)列的兩個不同的無窮等比子數(shù)列,使它們的各項和相等。設這兩個子數(shù)列的首項、公比分別為,其中,則

      ………… ①

      ,則①,矛盾;若,則①

      ,矛盾;故必有,不妨設,則

      ………… ②

      1時,②,等式左邊是偶數(shù),

      右邊是奇數(shù),矛盾;

      2時,②

      ,

      兩個等式的左、右端的奇偶性均矛盾;

      綜合可得,不存在原數(shù)列的兩個不同的無窮等比子數(shù)列,使得它們的各項和相等。

      【以上解答屬于層級4,可得設計分5分,解答分7分】

      問題三:是否存在原數(shù)列的兩個不同的無窮等比子數(shù)列,使得其中一個數(shù)列的各項和等于另一個數(shù)列的各項和的倍?若存在,求出所有滿足條件的子數(shù)列;若不存在,說明理由.

      解:假設存在滿足條件的原數(shù)列的兩個不同的無窮等比子數(shù)列。設這兩個子數(shù)列的首項、公比分別為,其中,則

      ,

      顯然當時,上述等式成立。例如取,得:

      第一個子數(shù)列:,各項和;第二個子數(shù)列:,

      各項和,有,因而存在原數(shù)列的兩個不同的無窮等比子數(shù)列,使得其中一個數(shù)列的各項和等于另一個數(shù)列的各項和的倍。

      【以上解答屬層級3,可得設計分4分,解答分6分.若進一步分析完備性,可提高一個層級評分】

      問題四:是否存在原數(shù)列的兩個不同的無窮等比子數(shù)列,使得其中一個數(shù)列的各項和等于另一個數(shù)列的各項和的倍?并說明理由.解(略):存在。

      問題五:是否存在原數(shù)列的兩個不同的無窮等比子數(shù)列,使得其中一個數(shù)列的各項和等于另一個數(shù)列的各項和的倍?并說明理由.解(略):不存在.

      【以上問題四、問題五等都屬于層級4的問題設計,可得設計分5分。解答分最高7分】

       


      同步練習冊答案