題目列表(包括答案和解析)
.已知圓與直線相切。
(1)求以圓O與y軸的交點(diǎn)為頂點(diǎn),直線在x軸上的截距為半長軸長的橢圓C方程;
(2)已知點(diǎn)A,若直線與橢圓C有兩個(gè)不同的交點(diǎn)E,F,且直線AE的斜率與直線AF的斜率互為相反數(shù);問直線的斜率是否為定值?若是求出這個(gè)定值;若不是,請說明理由.
.已知圓與直線相切。
(1)求以圓O與y軸的交點(diǎn)為頂點(diǎn),直線在x軸上的截距為半長軸長的橢圓C方程;
(2)已知點(diǎn)A,若直線與橢圓C有兩個(gè)不同的交點(diǎn)E,F,且直線AE的斜率與直線AF的斜率互為相反數(shù);問直線的斜率是否為定值?若是求出這個(gè)定值;若不是,請說明理由.
已知直線經(jīng)過點(diǎn),傾斜角,
(1)寫出直線的參數(shù)方程。
(2)設(shè)與圓相交與兩點(diǎn),求點(diǎn)到兩點(diǎn)的距離之積。
【解析】本試題主要是考查了直線與圓的位置關(guān)系的運(yùn)用,利用直線的參數(shù)方程,求解距離之積,這個(gè)體現(xiàn)了直線參數(shù)方程中t的幾何意義的作用的重要性。
已知半橢圓與半橢圓組成的曲線稱為“果圓”,其中,是對應(yīng)的焦點(diǎn)。
(1)若三角形是邊長為1的等邊三角形,求“果圓”的方程;
(2)若,求的取值范圍;
(3)一條直線與果圓交于兩點(diǎn),兩點(diǎn)的連線段稱為果圓的弦。是否存在實(shí)數(shù),使得斜率為的直線交果圓于兩點(diǎn),得到的弦的中點(diǎn)的軌跡方程落在某個(gè)果圓上?若存在,求出所有的值;若不存在,說明理由。
已知圓C,D是軸上的動點(diǎn),直線DA、DB分別切圓C于兩點(diǎn)。
(1)如果,求直線CD的方程;
(2)求動弦的中點(diǎn)的軌跡方程E;
(3)直線(為參數(shù))與方程E交于P、Q兩個(gè)不同的點(diǎn),O為原點(diǎn),設(shè)直線OP、OQ的斜率分別為,試將表示成m的函數(shù),并求其最小值。
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com