(文)過拋物線的焦點(diǎn)作直線交拋物線于...兩點(diǎn).若.則等于 A.4p B.5p C.6p D.8p 查看更多

 

題目列表(包括答案和解析)

(08年黃岡市質(zhì)檢文) (13分) 過拋物線的焦點(diǎn)作直線與拋物線交于、.

⑴求證:△不是直角三角形;

⑵當(dāng)的斜率為時(shí),拋物線上是否存在點(diǎn),使△為直角三角形且為直角(軸下方)?若存在,求出所有的點(diǎn);若不存在,說明理由.

查看答案和解析>>

(文)已知拋物線C:y2=2px(p>0)的準(zhǔn)線為l,焦點(diǎn)為F.⊙M的圓心在x軸的正半軸上,且與y軸相切.過原點(diǎn)O作傾斜角為數(shù)學(xué)公式的直線,交l于點(diǎn)A,交⊙M于另一點(diǎn)B,且AO=OB=2.
(Ⅰ)求⊙M和拋物線C的標(biāo)準(zhǔn)方程;
(Ⅱ)過圓心M的直線交拋物線C于P、Q兩點(diǎn),問數(shù)學(xué)公式是否為定值,若是定值,求出該定值.

查看答案和解析>>

(文)已知拋物線C:y2=2px(p>0)的準(zhǔn)線為l,焦點(diǎn)為F.⊙M的圓心在x軸的正半軸上,且與y軸相切.過原點(diǎn)O作傾斜角為的直線,交l于點(diǎn)A,交⊙M于另一點(diǎn)B,且AO=OB=2.
(Ⅰ)求⊙M和拋物線C的標(biāo)準(zhǔn)方程;
(Ⅱ)過圓心M的直線交拋物線C于P、Q兩點(diǎn),問是否為定值,若是定值,求出該定值.

查看答案和解析>>

(文科學(xué)生做)過拋物線的焦點(diǎn)F作一直線交拋物線于P、Q兩點(diǎn),若線段PF與FQ的長分別為p、q,則等于            (   ) 

   A.          B.       C.       D.

 

查看答案和解析>>

(08年哈師大附中文) 過拋物線的焦點(diǎn)作一條直線與拋物線相交于兩點(diǎn),且,則這樣的直線有

   A.一條    B.兩條    C.三條    D.不存在

查看答案和解析>>

1.A 2.B 3.B 4.D 5.(理)C (文)A 6.B 7.A 8.B 9.A 10.B 11.(理)A。ㄎ模〤 12.B

13.(理) (文)25,60,15 14.-672 15.2.5小時(shí) 16.①,④

17.設(shè)fx)的二次項(xiàng)系數(shù)為m,其圖象上兩點(diǎn)為(1-x,)、B(1+x,

因?yàn)?sub>,所以,

x的任意性得fx)的圖象關(guān)于直線x=1對稱,

m>0,則x≥1時(shí),fx)是增函數(shù),若m<0,則x≥1時(shí),fx)是減函數(shù).

  ∵ ,,, ,

  ∴ 當(dāng)時(shí),

,

  ∵ , ∴ 

  當(dāng)時(shí),同理可得

  綜上:的解集是當(dāng)時(shí),為;

  當(dāng)時(shí),為,或

18.(理)(1)設(shè)甲隊(duì)在第五場比賽后獲得冠軍為事件M,則第五場比賽甲隊(duì)獲勝,前四場比賽甲隊(duì)獲勝三場,依題意得

 。2)設(shè)甲隊(duì)獲得冠軍為事件E,則E包含第四、第五、第六、第七場獲得冠軍四種情況,且它們被彼此互斥.

  ∴ 

 。ㄎ模┰O(shè)甲袋內(nèi)恰好有4個(gè)白球?yàn)槭录?i>B,則B包含三種情況.

 、偌状腥2個(gè)白球,且乙袋中取2個(gè)白球,②甲袋中取1個(gè)白球,1個(gè)黑球,且乙袋中取1個(gè)白球,1個(gè)黑球,③甲、乙兩袋中各取2個(gè)黑球.

  ∴ 

19.(1)取中點(diǎn)E,連結(jié)ME、,∴ ,MCEC.∴ MC.∴ ,MC,N四點(diǎn)共面.

  (2)連結(jié)BD,則BD在平面ABCD內(nèi)的射影.

  ∵ , ∴ Rt△CDM~Rt△BCD,∠DCM=∠CBD

  ∴ ∠CBD+∠BCM=90°. ∴ MCBD.∴ 

 。3)連結(jié),由是正方形,知

  ∵ MC, ∴ ⊥平面

  ∴ 平面⊥平面

  (4)∠與平面所成的角且等于45°.

20.(1).∵ x≥1. ∴ 

  當(dāng)x≥1時(shí),是增函數(shù),其最小值為

  ∴ a<0(a=0時(shí)也符合題意). ∴ a≤0.

 。2),即27-6a-3=0, ∴ a=4.

  ∴ 有極大值點(diǎn),極小值點(diǎn)

  此時(shí)fx)在上時(shí)減函數(shù),在,+上是增函數(shù).

  ∴ fx)在,上的最小值是,最大值是,(因).

21.(1)∵斜率k存在,不妨設(shè)k>0,求出M,2).直線MA方程為,直線MB方程為

  分別與橢圓方程聯(lián)立,可解出,

  ∴ . ∴ (定值).

 。2)設(shè)直線AB方程為,與聯(lián)立,消去y

  由>0得-4<m<4,且m≠0,點(diǎn)MAB的距離為

  設(shè)△AMB的面積為S. ∴ 

  當(dāng)時(shí),得

22.(1)∵ ,a,,

  ∴   ∴   ∴  ∴ 

  ∴ a=2或a=3(a=3時(shí)不合題意,舍去). ∴a=2.

(2),由可得 

∴ .∴ b=5

 。3)由(2)知,, ∴ 

  ∴ . ∴ 

  ∵ 

  當(dāng)n≥3時(shí),

  

  

  

  ∴ . 綜上得 

 


同步練習(xí)冊答案