22.解(Ⅰ)由 得. --2分 查看更多

 

題目列表(包括答案和解析)

(2013•煙臺二模)為了解某班學生喜愛打籃球是否與性別有關,對本班50人進行了問卷調查得到了如下的列聯(lián)表:
喜愛打籃球 不喜愛打籃球 合計
男生 5
女生 10
合計 50
已知在全部50人中隨機抽取1人抽到喜愛打籃球的學生的概率為
3
5

(1)請將上面的列聯(lián)表補充完整(不用寫計算過程);
(2)能否在犯錯誤的概率不超過0.005的前提下認為喜愛打籃球與性別有關?說明你的理由;
(3)現(xiàn)從女生中抽取2人進一步調查,設其中喜愛打籃球的女生人數(shù)為ξ,求ξ的分布列與期望.
下面的臨界值表供參考:
P(K2≥k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k 2.072 2.706 3.841 5.024 6.635 7.879 10.828
(參考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d)

查看答案和解析>>

(2012•黑龍江)某花店每天以每枝5元的價格從農場購進若干枝玫瑰花,然后以每枝10元的價格出售,如果當天賣不完,剩下的玫瑰花作垃圾處理.
(1)若花店一天購進16枝玫瑰花,求當天的利潤y(單位:元)關于當天需求量n(單位:枝,n∈N)的函數(shù)解析式.
(2)花店記錄了100天玫瑰花的日需求量(單位:枝),整理得下表:
日需求量n 14 15 16 17 18 19 20
頻數(shù) 10 20 16 16 15 13 10
以100天記錄的各需求量的頻率作為各需求量發(fā)生的概率.
(i)若花店一天購進16枝玫瑰花,X表示當天的利潤(單位:元),求X的分布列,數(shù)學期望及方差;
(ii)若花店計劃一天購進16枝或17枝玫瑰花,你認為應購進16枝還是17枝?請說明理由.

查看答案和解析>>

(2012•鹽城一模)在綜合實踐活動中,因制作一個工藝品的需要,某小組設計了如圖所示的一個門(該圖為軸對稱圖形),其中矩形ABCD的三邊AB、BC、CD由長6分米的材料彎折而成,BC邊的長為2t分米(1≤t≤
3
2
);曲線AOD擬從以下兩種曲線中選擇一種:曲線C1是一段余弦曲線(在如圖所示的平面直角坐標系中,其解析式為y=cosx-1),此時記門的最高點O到BC邊的距離為h1(t);曲線C2是一段拋物線,其焦點到準線的距離為
9
8
,此時記門的最高點O到BC邊的距離為h2(t).
(1)試分別求出函數(shù)h1(t)、h2(t)的表達式;
(2)要使得點O到BC邊的距離最大,應選用哪一種曲線?此時,最大值是多少?

查看答案和解析>>

(2009•淄博一模)為了解某校高三學生的視力情況,隨機地抽查了該校1000名高三學生的視力情況,得到頻率分布直方圖,如圖,由于不慎將部分數(shù)據(jù)丟失,但知道前4組的頻數(shù)成等比數(shù)列,后6組的頻數(shù)成等差數(shù)列,設最大頻率為a,視力在4.6到5.0之間的學生數(shù)b,則a、b的值分別為( 。

查看答案和解析>>

(2012•黃州區(qū)模擬)為了解某校高三學生的視力情況,隨機地抽查了該校100名學生的視力情況,得到頻率分布直方圖如圖,由于不慎將部分數(shù)據(jù)丟失,只知道前4組的頻數(shù)成等比數(shù)列,后6組的頻數(shù)成等差數(shù)列,設最大頻率為a,視力在4.6到5.1之間的學生人數(shù)為b,則a和b的值分別為( 。

查看答案和解析>>


同步練習冊答案