14已知的面積為.且,則= 查看更多

 

題目列表(包括答案和解析)

已知點P(-2
2
,0),Q(2
2
,0)
,動點N(x,y),設(shè)直線NP,NQ的斜率分別記為k1,k2,記k1?k2=-
1
4
(其中“?”可以是四則運算加、減、乘、除中的任意一種運算),坐標原點為O,點M(2,1).
(Ⅰ)探求動點N的軌跡方程;
(Ⅱ)若“?”表示乘法,動點N的軌跡再加上P,Q兩點記為曲線C,直線l平行于直線OM,且與曲線C交于A,B兩個不同的點.
(。┤粼cO在以AB為直徑的圓的內(nèi)部,試求出直線l在y軸上的截距m的取值范圍.
(ⅱ)試求出△AOB面積的最大值及此時直線l的方程.

查看答案和解析>>

已知三棱錐P-ABC的四個頂點均在半徑為1的球面上,且滿足:
PA
PB
=0,
PB
PC
=0,
PC
PA
=0
,則三棱錐P-ABC的側(cè)面積的最大值為( 。

查看答案和解析>>

(本小題滿分14分)如圖,已知直線OP1OP2為雙曲線E:的漸近線,△P1OP2的面積為,在雙曲線E上存在點P為線段P1P2的一個三等分點,且雙曲線E的離心率為.

(1)若P1P2點的橫坐標分別為x1、x,則x1、x2之間滿足怎樣的關(guān)系?并證明你的結(jié)論;

(2)求雙曲線E的方程;

(3)設(shè)雙曲線E上的動點,兩焦點,若為鈍角,求點橫坐標的取值范圍.

 

查看答案和解析>>

(本小題滿分14分)如圖,已知直線OP1,OP2為雙曲線E:的漸近線,△P1OP2的面積為,在雙曲線E上存在點P為線段P1P2的一個三等分點,且雙曲線E的離心率為.

(1)若P1、P2點的橫坐標分別為x1、x,則x1、x2之間滿足怎樣的關(guān)系?并證明你的結(jié)論;
(2)求雙曲線E的方程;
(3)設(shè)雙曲線E上的動點,兩焦點,若為鈍角,求點橫坐標的取值范圍.

查看答案和解析>>

(本小題滿分14分)如圖,已知直線OP1,OP2為雙曲線E:的漸近線,△P1OP2的面積為,在雙曲線E上存在點P為線段P1P2的一個三等分點,且雙曲線E的離心率為.

(1)若P1、P2點的橫坐標分別為x1、x,則x1x2之間滿足怎樣的關(guān)系?并證明你的結(jié)論;
(2)求雙曲線E的方程;
(3)設(shè)雙曲線E上的動點,兩焦點,若為鈍角,求點橫坐標的取值范圍.

查看答案和解析>>

2009年曲靖一種高考沖刺卷理科數(shù)學(一)

一、

1 B 2C 3A 4A 5 A 6 D 7D 8C 9B

10B 11 C 12 A

1依題意得,所以,因此選B

2依題意得。又在第二象限,所以,

,故選C

3

因此選A

4 由

因為為純虛數(shù)的充要條件為

故選A

5如圖,

 

故選A

6.設(shè)

故選D

7.設(shè)等差數(shù)列的首項為,公差,因為成等比數(shù)列,所以,即,解得,故選D

8.由,所以之比為2,設(shè),,又點在圓上,所以,即+-4,化簡得=16,故選C

9.長方體的中心即為球心,設(shè)球半徑為,則

于是兩點的球面距離為故選B

10.先分別在同一坐標系上畫出函數(shù)的圖象(如圖1)

www.ks5u.com   高考資源網(wǎng)

觀察圖2,顯然,選B

11.依題意,

故選C

12.由題意知,

 

    ①

代入式①得

由方程的兩根為

故選A。

二、

13.5   14.7    15.22    16.①

13.5.線性規(guī)劃問題先作出可行域,注意本題已是最優(yōu)的特定參數(shù)的特點,可考慮特殊的交點,再驗證,由題設(shè)可知

應(yīng)用運動變化的觀點驗證滿足為所求。

14.7. 由題意得

因此A是鈍角,

15.22,連接,的周章為

16.①當時,,取到最小值,因次,是對稱軸:②當時,因此不是對稱中心;③由,令可得上不是增函數(shù);把函數(shù)的圖象向左平移得到的圖象,得不到的圖象,故真命題序號是①。

 17.(1)上單調(diào)遞增,

上恒成立,即上恒成立,即實數(shù)的取值范圍

(2)由題設(shè)條件知上單調(diào)遞增。

,即

的解集為

的解集為

18.(1)過連接

側(cè)面

是邊長為2的等邊三角形。又點,在底面上的射影,

(法一)(2)就是二面角的平面角,都是邊長為2的正三角形,即二面角的大小為45°

(3)取的中點為連接的中點,,又,且在平面上,又的中點,線段的長就是到平面的距離在等腰直角三角形中,,,,即到平面的距離是

 

(法二)(2),軸、軸、軸建立空間直角坐標系,則點設(shè)平面的法向量為,則,解得,,平面的法向量

向量所成角為45°故二面角的大小為45°,

(3)由的中點設(shè)平面的法向量為,則,解得到平面的距離為

19.(1)取值為0,1,2,3,4

的分布列為

0

1

2

3

4

P

(2)由

所以,當時,由

時,由

即為所求‘

20.(1)在一次函數(shù)的圖像上,

 

于是,且

數(shù)列是以為首項,公比為2的等比數(shù)列

(3)      由(1)知

 

21.(1)由題意得:

點Q在以M、N為焦點的橢圓上,即

點Q的軌跡方程為

(2)

設(shè)點O到直線AB的距離為,則

時,等號成立

時,面積的最大值為3

22.(1)

(2)由題意知

(3)等價證明

由(1)知

  

 

 

 

 

 

 

 

 


同步練習冊答案