題目列表(包括答案和解析)
設(shè)函數(shù)的定義域?yàn)镈,若存在非零實(shí)數(shù)h使得對(duì)于任意,有,且,則稱(chēng)為M上的“h階高調(diào)函數(shù)”。給出如下結(jié)論:
①若函數(shù)在R上單調(diào)遞增,則存在非零實(shí)數(shù)h使為R上的“h階高調(diào)函數(shù)”;
②若函數(shù)為R上的“h階高調(diào)函數(shù)”,則在R上單調(diào)遞增;
③若函數(shù)為區(qū)間上的“h階高誣蔑財(cái)函數(shù)”,則
④若函數(shù)在R上的奇函數(shù),且時(shí),只能是R上的“4階高調(diào)函數(shù)”。
其中正確結(jié)論的序號(hào)為 ( )
A.①③ B.①④ C.②③ D.②④
已知函數(shù)的圖象過(guò)坐標(biāo)原點(diǎn)O,且在點(diǎn)處的切線的斜率是.
(Ⅰ)求實(shí)數(shù)的值;
(Ⅱ)求在區(qū)間上的最大值;
(Ⅲ)對(duì)任意給定的正實(shí)數(shù),曲線上是否存在兩點(diǎn)P、Q,使得是以O(shè)為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在軸上?說(shuō)明理由.
【解析】第一問(wèn)當(dāng)時(shí),,則。
依題意得:,即 解得
第二問(wèn)當(dāng)時(shí),,令得,結(jié)合導(dǎo)數(shù)和函數(shù)之間的關(guān)系得到單調(diào)性的判定,得到極值和最值
第三問(wèn)假設(shè)曲線上存在兩點(diǎn)P、Q滿(mǎn)足題設(shè)要求,則點(diǎn)P、Q只能在軸兩側(cè)。
不妨設(shè),則,顯然
∵是以O(shè)為直角頂點(diǎn)的直角三角形,∴
即 (*)若方程(*)有解,存在滿(mǎn)足題設(shè)要求的兩點(diǎn)P、Q;
若方程(*)無(wú)解,不存在滿(mǎn)足題設(shè)要求的兩點(diǎn)P、Q.
(Ⅰ)當(dāng)時(shí),,則。
依題意得:,即 解得
(Ⅱ)由(Ⅰ)知,
①當(dāng)時(shí),,令得
當(dāng)變化時(shí),的變化情況如下表:
0 |
|||||
— |
0 |
+ |
0 |
— |
|
單調(diào)遞減 |
極小值 |
單調(diào)遞增 |
極大值 |
單調(diào)遞減 |
又,,!在上的最大值為2.
②當(dāng)時(shí), .當(dāng)時(shí), ,最大值為0;
當(dāng)時(shí), 在上單調(diào)遞增!在最大值為。
綜上,當(dāng)時(shí),即時(shí),在區(qū)間上的最大值為2;
當(dāng)時(shí),即時(shí),在區(qū)間上的最大值為。
(Ⅲ)假設(shè)曲線上存在兩點(diǎn)P、Q滿(mǎn)足題設(shè)要求,則點(diǎn)P、Q只能在軸兩側(cè)。
不妨設(shè),則,顯然
∵是以O(shè)為直角頂點(diǎn)的直角三角形,∴
即 (*)若方程(*)有解,存在滿(mǎn)足題設(shè)要求的兩點(diǎn)P、Q;
若方程(*)無(wú)解,不存在滿(mǎn)足題設(shè)要求的兩點(diǎn)P、Q.
若,則代入(*)式得:
即,而此方程無(wú)解,因此。此時(shí),
代入(*)式得: 即 (**)
令 ,則
∴在上單調(diào)遞增, ∵ ∴,∴的取值范圍是。
∴對(duì)于,方程(**)總有解,即方程(*)總有解。
因此,對(duì)任意給定的正實(shí)數(shù),曲線上存在兩點(diǎn)P、Q,使得是以O(shè)為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在軸上
已知函數(shù)在區(qū)間[0,1]上單調(diào)遞增,在區(qū)間[1,2]上單調(diào)遞減。
(1)求的值;
(2)若斜率為24的直線是曲線的切線,求此直線方程;
(3)是否存在實(shí)數(shù)b,使得函數(shù)的圖象與函數(shù)的圖象恰有2個(gè)不同交點(diǎn)?若存在,求出實(shí)數(shù)b的值;若不存在,試說(shuō)明理由.
已知函數(shù)在區(qū)間上為增函數(shù),且。
(1)當(dāng)時(shí),求的值;
(2)當(dāng)最小時(shí),
①求的值;
②若是圖象上的兩點(diǎn),且存在實(shí)數(shù)使得
,證明:。
一、選擇題.(單項(xiàng)選擇,5×12=60分.答案涂在答題卡上的相應(yīng)位置.)
1.C 2. A 3. B 4. B 5. B 6. B 7. A 8. C 9.D 10. B 11.D 12. B
二、填空題.( 5×4=20分,答案寫(xiě)在答題紙的相應(yīng)空格內(nèi).)
13. 14.②④⑤ 15. 16.11
三、解答題.(12×5+10=70分,答案寫(xiě)在答題紙的答題區(qū)內(nèi).)
17.(Ⅰ)∵ m?n ……… 2分
∴,解得 ……… 6分
(Ⅱ) ……… 8分
∵,∴ ………10分
∴的值域?yàn)閇] ………12分
18.(Ⅰ)把一根長(zhǎng)度為8的鐵絲截成3段,且三段的長(zhǎng)度均為整數(shù),共有21種解法.
(可視為8個(gè)相同的小球放入3個(gè)不同盒子,有種方法) … 3分
其中能構(gòu)成三角形的情況有3種情況:“2,3,
則所求的概率是 ……… 6分
(Ⅱ)根據(jù)題意知隨機(jī)變量 ……… 8分
∴ ……12分
19.(Ⅰ)∵點(diǎn)A、D分別是、的中點(diǎn),∴. …… 2分
∴∠=90º.∴.∴ ,
∵,∴⊥平面. ……… 4分
∵平面,∴. ……… 5分
(Ⅱ)建立如圖所示的空間直角坐標(biāo)系.
則(-1,0,0),(-2,1,0),(0,0,1).
∴=(-1,1,0),=(1,0,1), …6分
設(shè)平面的法向量為=(x,y,z),則:
, ……… 8分
令,得,∴=(1,1,-1)
顯然,是平面的一個(gè)法向量,=(). ………10分
∴cos<,>=.
∴二面角的平面角的余弦值是. ………12分
20.(Ⅰ) ……… 4分
(Ⅱ)由橢圓的對(duì)稱(chēng)性知:PRQS為菱形,原點(diǎn)O到各邊距離相等……… 5分
⑴當(dāng)P在y軸上時(shí),易知R在x軸上,此時(shí)PR方程為,
. ……… 6分
⑵當(dāng)P在x軸上時(shí),易知R在y軸上,此時(shí)PR方程為,
. ……… 7分
⑶當(dāng)P不在坐標(biāo)軸上時(shí),設(shè)PQ斜率為k,、
P在橢圓上,.......①;R在橢圓上,....
②利用Rt△POR可得 ……… 9分
即
整理得 . ………11分
再將①②帶入,得
綜上當(dāng)時(shí),有. ………12分
21.(Ⅰ)時(shí),單調(diào)遞減,
當(dāng)單調(diào)遞增。
①若無(wú)解;
②若
③若時(shí),上單調(diào)遞增,
;
所以 ……… 4分
(Ⅱ)則
設(shè)則時(shí),
單調(diào)遞減,單調(diào)遞增,
所以因?yàn)閷?duì)一切
恒成立,所以; ……… 8分
(Ⅲ)問(wèn)題等價(jià)于證明,
由(Ⅰ)可知
當(dāng)且僅當(dāng)時(shí)取到,設(shè)
則,當(dāng)且僅當(dāng)時(shí)取到,
從而對(duì)一切成立. ………12分
22.(Ⅰ)連接OC,∵OA=OB,CA=CB ∴OC⊥AB∴AB是⊙O的切線 … 5分
(Ⅱ)∵ED是直徑,∴∠ECD=90°∴∠E+∠EDC=90°
又∵∠BCD+∠OCD=90°,∠OCD=∠ODC,∴∠BCD=∠E
又∵∠CBD+∠EBC,∴△BCD∽△BEC ∴ ∴BC2=BD•BE
∵tan∠CED=,∴∵△BCD∽△BEC, ∴
設(shè)BD=x,則BC=2 又BC2=BD•BE,∴(2x)2=x•(x+6)
解得x1=0,x2=2, ∵BD>0, ∴BD=2∴OA=OB=BD+OD=3+2=5 … 10分
23.(Ⅰ) … 5分
(Ⅱ) … 10分
23.(Ⅰ), … 5分
(Ⅱ)
… 10分
本資料由《七彩教育網(wǎng)》www.7caiedu.cn 提供!
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com