(2)已知圓P過A.B兩點(diǎn).且與軸相切. 查看更多

 

題目列表(包括答案和解析)

已知在Rt△OAB中,∠OAB=90,∠BOA=30,OA=4.現(xiàn)以O(shè)為坐標(biāo)原點(diǎn),OA所在直線為x軸,建立平面直角坐標(biāo)系,點(diǎn)B在第一象限內(nèi).將Rt△OAB沿OB 折疊后,點(diǎn)A落在第一象限內(nèi)的點(diǎn)C處.
(1)求點(diǎn)C的坐標(biāo);
(2)若拋物線(a≠0)經(jīng)過C、A兩點(diǎn),求此拋物線的解析式;
(3)若⊙P的半徑為R,圓心P在(2)的拋物線上運(yùn)動(dòng),問:是否存在這樣的點(diǎn)P,使得⊙P與兩坐標(biāo)軸都相切?若存在,請求出此時(shí)⊙P半徑R的值;若不存在,請說明理由.

查看答案和解析>>

已知:如圖,⊙A與y軸交于C、D兩點(diǎn),圓心A的坐標(biāo)為(1,0),⊙A的半徑為,過C作⊙A的切線交x軸于點(diǎn)B(-4,0)。
(1)求切線BC的解析式;
(2)若點(diǎn)P是第一象限內(nèi)⊙A上的一點(diǎn),過點(diǎn)P作⊙A的切線與直線BC相交于點(diǎn)G,且∠CGP=120°,求點(diǎn)G的坐標(biāo);
(3)向左移動(dòng)⊙A(圓心A始終保持在x軸上),與直線BC交于E、F,在移動(dòng)過程中是否存在點(diǎn)A,使△AEF是直角三角形?若存在,求出點(diǎn)A的坐標(biāo);若不存在,請說明理由。

查看答案和解析>>

 已知:如圖,在直角坐標(biāo)系xoy中,點(diǎn)A(2,0),點(diǎn)B在第一象限且△OAB為正三角形,△OAB的外接圓交y軸的正半軸于點(diǎn)C,過點(diǎn)C的圓的切線交x軸于點(diǎn)D

【小題1】(1)求B、C兩點(diǎn)的坐標(biāo);
【小題2】(2)求直線CD的函數(shù)解析式;
【小題3】(3)設(shè)EF分別是線段AB、AD上的兩個(gè)動(dòng)點(diǎn),且EF平分四邊形ABCD的周長.
試探究:當(dāng)點(diǎn)E運(yùn)動(dòng)到什么位置時(shí),△AEF的面積最大?最大面積是多少?

查看答案和解析>>

 已知:如圖,在直角坐標(biāo)系xoy中,點(diǎn)A(2,0),點(diǎn)B在第一象限且△OAB為正三角形,△OAB的外接圓交y軸的正半軸于點(diǎn)C,過點(diǎn)C的圓的切線交x軸于點(diǎn)D

【小題1】(1)求B、C兩點(diǎn)的坐標(biāo);
【小題2】(2)求直線CD的函數(shù)解析式;
【小題3】(3)設(shè)E、F分別是線段AB、AD上的兩個(gè)動(dòng)點(diǎn),且EF平分四邊形ABCD的周長.
試探究:當(dāng)點(diǎn)E運(yùn)動(dòng)到什么位置時(shí),△AEF的面積最大?最大面積是多少?

查看答案和解析>>

(2013•自貢)如圖,已知拋物線y=ax2+bx-2(a≠0)與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),直線BD交拋物線于點(diǎn)D,并且D(2,3),tan∠DBA=
12

(1)求拋物線的解析式;
(2)已知點(diǎn)M為拋物線上一動(dòng)點(diǎn),且在第三象限,順次連接點(diǎn)B、M、C、A,求四邊形BMCA面積的最大值;
(3)在(2)中四邊形BMCA面積最大的條件下,過點(diǎn)M作直線平行于y軸,在這條直線上是否存在一個(gè)以Q點(diǎn)為圓心,OQ為半徑且與直線AC相切的圓?若存在,求出圓心Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>


同步練習(xí)冊答案