題目列表(包括答案和解析)
用數(shù)學歸納法證明:
.
【解析】首先證明當n=1時等式成立,再假設n=k時等式成立,得到等式
,
下面證明當n=k+1時等式左邊
,
根據(jù)前面的假設化簡即可得到結果,最后得到結論.
已知函數(shù)f(x)=ex-ax,其中a>0.
(1)若對一切x∈R,f(x) 1恒成立,求a的取值集合;
(2)在函數(shù)f(x)的圖像上去定點A(x1, f(x1)),B(x2, f(x2))(x1<x2),記直線AB的斜率為k,證明:存在x0∈(x1,x2),使恒成立.
【解析】解:令.
當時單調(diào)遞減;當時單調(diào)遞增,故當時,取最小值
于是對一切恒成立,當且僅當. 、
令則
當時,單調(diào)遞增;當時,單調(diào)遞減.
故當時,取最大值.因此,當且僅當時,①式成立.
綜上所述,的取值集合為.
(Ⅱ)由題意知,令則
令,則.當時,單調(diào)遞減;當時,單調(diào)遞增.故當,即
從而,又
所以因為函數(shù)在區(qū)間上的圖像是連續(xù)不斷的一條曲線,所以存在使即成立.
【點評】本題考查利用導函數(shù)研究函數(shù)單調(diào)性、最值、不等式恒成立問題等,考查運算能力,考查分類討論思想、函數(shù)與方程思想等數(shù)學方法.第一問利用導函數(shù)法求出取最小值對一切x∈R,f(x) 1恒成立轉化為從而得出求a的取值集合;第二問在假設存在的情況下進行推理,然后把問題歸結為一個方程是否存在解的問題,通過構造函數(shù),研究這個函數(shù)的性質進行分析判斷.
已知,(其中)
⑴求及;
⑵試比較與的大小,并說明理由.
【解析】第一問中取,則; …………1分
對等式兩邊求導,得
取,則得到結論
第二問中,要比較與的大小,即比較:與的大小,歸納猜想可得結論當時,;
當時,;
當時,;
猜想:當時,運用數(shù)學歸納法證明即可。
解:⑴取,則; …………1分
對等式兩邊求導,得,
取,則。 …………4分
⑵要比較與的大小,即比較:與的大小,
當時,;
當時,;
當時,; …………6分
猜想:當時,,下面用數(shù)學歸納法證明:
由上述過程可知,時結論成立,
假設當時結論成立,即,
當時,
而
∴
即時結論也成立,
∴當時,成立。 …………11分
綜上得,當時,;
當時,;
當時,
在數(shù)列中, 記
(Ⅰ)求、、、并推測;
(Ⅱ)用數(shù)學歸納法證明你的結論.
【解析】第一問利用遞推關系可知,、、、,猜想可得
第二問中,①當時,=,又,猜想正確
②假設當時猜想成立,即,
當時,
=
=,即當時猜想也成立
兩步驟得到。
(2)①當時,=,又,猜想正確
②假設當時猜想成立,即,
當時,
=
=,即當時猜想也成立
由①②可知,對于任何正整數(shù)都有成立
已知數(shù)列的前項和為,且 (N*),其中.
(Ⅰ) 求的通項公式;
(Ⅱ) 設 (N*).
①證明: ;
② 求證:.
【解析】本試題主要考查了數(shù)列的通項公式的求解和運用。運用關系式,表示通項公式,然后得到第一問,第二問中利用放縮法得到,②由于,
所以利用放縮法,從此得到結論。
解:(Ⅰ)當時,由得. ……2分
若存在由得,
從而有,與矛盾,所以.
從而由得得. ……6分
(Ⅱ)①證明:
證法一:∵∴
∴
∴.…………10分
證法二:,下同證法一. ……10分
證法三:(利用對偶式)設,,
則.又,也即,所以,也即,又因為,所以.即
………10分
證法四:(數(shù)學歸納法)①當時, ,命題成立;
②假設時,命題成立,即,
則當時,
即
即
故當時,命題成立.
綜上可知,對一切非零自然數(shù),不等式②成立. ………………10分
②由于,
所以,
從而.
也即
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com