4.如圖△ABC中.∠ABC=45°.AD⊥BC于D.點(diǎn)E在AD上.DE=CD.求證BE=AC. 查看更多

 

題目列表(包括答案和解析)

(本題6分) (湖南湘西,20,6分)如圖,在△ABC中,AD⊥BC,垂足為D,∠B=60°,∠C=45°.
(1)求∠BAC的度數(shù)。
(2)若AC=2,求AD的長(zhǎng)。

查看答案和解析>>

(本小題滿(mǎn)分10分)

(1)如圖24—1,已知△ABC中,∠BAC=45°,AB="AC," AD⊥BC于D, 將△ABC沿AD剪開(kāi),并分別以AB、AC為軸翻轉(zhuǎn),點(diǎn)E、F分別是點(diǎn)D的對(duì)應(yīng)點(diǎn),得到△ABE和△ACF (與△ABC在同一平面內(nèi)).延長(zhǎng)EB、FC相交于G點(diǎn),證明四邊形AEGF是正方形;
(2)如果⑴中AB≠AC,其他不變,如圖24—2.那么四邊形AEGF是否是正方形?請(qǐng)說(shuō)明理由.
(3)在⑵中,若BD=2,DC=3,求AD的長(zhǎng).

查看答案和解析>>

小明和同桌小聰在課后做作業(yè)時(shí),對(duì)課本中的一道作業(yè)題,進(jìn)行了認(rèn)真探索。

【作業(yè)題】如圖1,一個(gè)半徑為100m的圓形人工湖如圖所示,弦AB是湖上的一座橋,測(cè)得圓周角∠C=45°,求橋AB的長(zhǎng)。

小明和小聰經(jīng)過(guò)交流,得到了如下的兩種解決方法:

方法一:延長(zhǎng)BO交⊙O與點(diǎn)E,連接AE,得 Rt△ABE,∠E=∠C,∴AB=100;

方法二:作AB的弦心距OH,連接OB, ∴∠BOH=∠C,解Rt△OHB, ∴HB=50

∴AB=100。

感悟:圓內(nèi)接三角形的一邊和這邊的對(duì)銳角、圓的半徑(或直徑)這三者關(guān)系,

可構(gòu)成直角三角形,從而把一邊和這邊的對(duì)銳角﹑半徑建立一個(gè)關(guān)系式。

(1)問(wèn)題解決:受到(1)的啟發(fā),請(qǐng)你解下面命題:如圖2,點(diǎn)A(3,0)、B(0,),C為直線(xiàn)AB上一點(diǎn),過(guò)A、O、C的⊙E的半徑為2. 求線(xiàn)段OC的長(zhǎng)。

(2)問(wèn)題拓展:如圖3,△ABC中,∠ ACB=75°,∠ABC=45°,AB=2,D是線(xiàn)段BC上的一個(gè)動(dòng)點(diǎn),以AD為直徑畫(huà)⊙O分別交AB,AC于E,F(xiàn),連結(jié)EF, 設(shè)⊙O半徑為x, EF為y.

①     y關(guān)于x的函數(shù)關(guān)系式;②求線(xiàn)段EF長(zhǎng)度的最小值。

查看答案和解析>>

觀(guān)察與思考:閱讀下列材料,并解決后面的問(wèn)題
在銳角△ABC中,∠A、∠B、∠C的對(duì)邊分別是a、b、c,過(guò)A作AD⊥BC于D(如圖(1)),則數(shù)學(xué)公式,即AD=csinB,AD=bsinC,于是csinB=bsinC,即數(shù)學(xué)公式,同理有:數(shù)學(xué)公式,
所以數(shù)學(xué)公式
即:在一個(gè)三角形中,各邊和它所對(duì)角的正弦的比相等在銳角三角形中,若已知三個(gè)元素(至少有一條邊),運(yùn)用上述結(jié)論和有關(guān)定理就可以求出其余三個(gè)未知元素.
根據(jù)上述材料,完成下列各題.

(1)如圖(2),△ABC中,∠B=45°,∠C=75°,BC=60,則∠A=______;AC=______;
(2)自從去年日本政府自主自導(dǎo)“釣魚(yú)島國(guó)有化”鬧劇以來(lái),我國(guó)政府靈活應(yīng)對(duì),現(xiàn)如今已對(duì)釣魚(yú)島執(zhí)行常態(tài)化巡邏.某次巡邏中,如圖(3),我漁政204船在C處測(cè)得A在我漁政船的北偏西30°的方向上,隨后以40海里/時(shí)的速度按北偏東30°的方向航行,半小時(shí)后到達(dá)B處,此時(shí)又測(cè)得釣魚(yú)島A在的北偏西75°的方向上,求此時(shí)漁政204船距釣魚(yú)島A的距離AB.(結(jié)果精確到0.01,數(shù)學(xué)公式

查看答案和解析>>

如果三角形有一邊上的中線(xiàn)長(zhǎng)恰好等于這邊的長(zhǎng),那么稱(chēng)這個(gè)三角形為“好玩三角形”

(1)請(qǐng)用直尺與圓規(guī)畫(huà)一個(gè)“好玩三角形”;

(2)如圖1,在Rt⊿ABC中,∠C=90°,,求證:⊿ABC是“好玩三角形”;

(3)如圖2,已知菱形ABCD的邊長(zhǎng)為a, ∠ABC=2β,點(diǎn)P,Q從點(diǎn)A同時(shí)出發(fā),以相同的速度分別沿折線(xiàn)AB-BC和AD-DC向終點(diǎn)C運(yùn)動(dòng),記點(diǎn)P所經(jīng)過(guò)的路程為S

①當(dāng)β=45°時(shí),若⊿APQ是“好玩三角形”,試求的值

②當(dāng)tanβ的取值在什么范圍內(nèi),點(diǎn)P,Q在運(yùn)動(dòng)過(guò)程中,有且只有一個(gè)⊿APQ能成為“好玩三角形”請(qǐng)直接寫(xiě)出tanβ的取值范圍。

(4)本小題為選做題

依據(jù)(3)中的條件,提出一個(gè)關(guān)于“在點(diǎn)P,Q的運(yùn)動(dòng)過(guò)程中,tanβ的取值范圍與⊿APQ是“好玩三角形”的個(gè)數(shù)關(guān)系的真命題(“好玩三角形”的個(gè)數(shù)限定不能為1)。

查看答案和解析>>


同步練習(xí)冊(cè)答案