在一組數(shù)據(jù)x
1,x
2,…,x
n中,各數(shù)據(jù)與它們的平均數(shù)
的差的絕對值的平均數(shù),即
叫做這組數(shù)據(jù)的“平均差”.“平均差”也能描述一組數(shù)據(jù)的離散程度.“平均差”越大說明數(shù)據(jù)的離散程度越大.因為“平均差”的計算要比方差的計算要容易一點,所以有時人們也用它來代替方差來比較數(shù)據(jù)的離散程度.極差、方差(標準差)、平均差都是反映數(shù)據(jù)離散程度的量.
一水產(chǎn)養(yǎng)殖戶李大爺要了解魚塘中魚的重量的離散程度,因為個頭大小差異太大會出現(xiàn)“大魚吃小魚”的情況;為防止出現(xiàn)“大魚吃小魚”的情況,在能反映數(shù)據(jù)離散程度幾個的量中某些值超標時就要捕撈;分開養(yǎng)殖或出售;他從兩個魚塘各隨機捕撈10條魚稱得重量如下:(單位:千克)
A魚塘:3、5、5、5、7、7、5、5、5、3
B魚塘:4、4、5、6、6、5、6、6、4、4
(1)分別計算甲、乙兩個魚塘中抽取的樣本的極差、方差、平均差;完成下面的表格:
(2)如果你是技術人員,你會建議李大爺注意哪個魚塘的風險更大些?計算哪些量更能說明魚重量的離散程度?