17.如圖:半圓A與半圓B均與y軸相切與點O.其直徑CD.EF均和軸垂直.以O(shè)為頂點的兩條拋物線分別經(jīng)過點C.E和點D.F.則圖中陰影部分的面積為: . 查看更多

 

題目列表(包括答案和解析)

(2013•金平區(qū)模擬)如圖,直線l:y=-2x+4交y軸于A點,交x軸于B點,四邊形OACD為正方形,點P從D點開始沿x軸向點O以每秒2個單位的速度移動,點Q從點B開始沿BA向點A以每秒
5
個單位的速度移動,如果P,Q分別從D,B同時出發(fā).
(1)設(shè)△PAQ的面積等于S,運動時間為t秒,當0<t<2時,求S與t之間的函數(shù)關(guān)系;
(2)當點Q移到AB的中點E時,P點停止移動.直線l向右平移m個單位,得到直線l1
如圖,直線l1交y軸于A1點,交x軸于B1點,Q1為A1B1的中點.△PAQ1的面積S1是否與m的值有關(guān)?請說明你的理由.

查看答案和解析>>

如圖1、2,已知拋物線y=ax2+bx+3經(jīng)過點B(-1,0)、C(3,0),交y軸于點A.
(1)求此拋物線的解析式;
(2)如圖1,若M(0,1),過點A的直線與x軸交于點D(4,0).直角梯形EFGH的上底EF與線段CD重合,∠FEH=90°,EF∥HG,EF=EH=1.直角梯形EFGH從點D開始,沿射線DA方向勻速運動,運動的速度為1個長度單位/秒,在運動過程中腰FG與直線AD始終重合,設(shè)運動時間為t秒.當t為何值時,以M、O、H、E為頂點的四邊形是特殊的平行四邊形;
(3)如圖2,拋物線頂點為K,KI⊥x軸于I點,一塊三角板直角頂點P在線段KI上滑動,且一直角邊過A點,另一直角邊與x軸交于Q(m,0),請求出實數(shù)m的變化范圍,并說明理由.

查看答案和解析>>

如圖,已知直線y=x+8交x軸于A點,交y軸于B點,過A、0兩點的拋物線y=ax2+bx(a<精英家教網(wǎng)O)的頂點C在直線AB上,以C為圓心,CA的長為半徑作⊙C.
(1)求拋物線的對稱軸、頂點坐標及解析式;
(2)將⊙C沿x軸翻折后,得到⊙C′,求證:直線AC是⊙C′的切線;
(3)若M點是⊙C的優(yōu)弧
ABO
(不與0、A重合)上的一個動點,P是拋物線上的點,且∠POA=∠AM0,求滿足條件的P點的坐標.

查看答案和解析>>

如圖,拋物線y=ax2+bx+c經(jīng)過A(1,0)、B(5,0)兩點,最低點的縱坐標為-4,與y軸交于點C.
(1)求該拋物線的函數(shù)解析式;
(2)如圖1,若△ABC的外接圓⊙O1交y軸不同于點C的點D,且CD=AB,求tan∠ACB的值;
(3)如圖2,設(shè)⊙O1的弦DE∥x軸,在x軸上是否存在點F,使△OCF與△CDE相似?若存在,求出所有符合條件的點F的坐標;若不存在,請說明理由.
精英家教網(wǎng)

查看答案和解析>>

精英家教網(wǎng)已知如圖,直線AE:y=3x+12交x軸于E點,交y軸于A點,再把△AOE沿著AE翻折,使得AO落在AD的位置,設(shè)直線AD交軸x于點B,P點以1個單位每秒的速度自B點出發(fā)沿BO-OA向終點A運動,設(shè)點P的運動時間為t.
(1)求直線AD的解析式;
(2)設(shè)△PDE的面積為S,求S與t的函數(shù)關(guān)系式,直接寫出自變量的取值范圍;
(3)連接DP,設(shè)直線DP交直線AE于點Q,當直線DP與直線AE的夾角的正切為
1
2
時,求t的值,并判斷此時以P點為圓心,以
6
10
7
為半徑的圓與直線AE的位置關(guān)系.

查看答案和解析>>


同步練習冊答案