聯(lián)想拓展:小明通過探究后發(fā)現:在一個四邊形中.只要有一組對邊平行.就可以剪拼成平行四邊形.如圖5的凸多邊形中.AE=CD.AE∥CD.能否象上面剪切方法一樣沿一條直線進行剪切.拼成一個平行四邊形?若能.請你在圖中畫出剪拼的示意圖并作必要的文字說明,若不能.簡要說明理由. 查看更多

 

題目列表(包括答案和解析)

如圖1,在直角梯形ABCD中,AD∥BC,∠B=∠A=90°,AD=a,BC=b,AB=c,
操作示例:
我們可以取直角梯形ABCD的非直角腰CD的中點P,過點P作PE∥AB,裁掉△PEC,并將△PEC繞點P逆時針旋轉180°拼接到△PFD的位置,構成新的圖形(如圖2).
思考發(fā)現:
判斷圖2中四邊形ABEF的形狀:
 
;四邊形ABEF的面積是
 
.(用含字母的代數式表示)
實踐探究:
類比圖2的剪拼方法,請你就圖3(已知:AB∥DC)畫出剪拼成一個平行四邊形的示意圖.
精英家教網精英家教網
聯(lián)想拓展:
小明通過探究后發(fā)現:在一個四邊形中,只要有一組對邊平行,就可以剪拼成平行四邊形.
(1)如圖4,在梯形ABCD中,AD∥BC,E是CD的中點,EF⊥AB于點F,AB=5,EF=4,求梯形ABCD的面積.
(2)如圖5的多邊形中,AE=CD,AE∥CD,能否象上面剪切方法一樣沿一條直線進行剪切,拼成一平行四邊形?若能,請你在圖中畫出剪拼的示意圖并作必要的文字說明;若不能,簡要說明理由.

查看答案和解析>>

如圖1,在直角梯形ABCD中,AD∥BC,∠B=∠A=90°,AD=a,BC=b,AB=c,
操作示例:
我們可以取直角梯形ABCD的非直角腰CD的中點P,過點P作PE∥AB,裁掉△PEC,并將△PEC拼接到△PFD的位置,構成新的圖形(如圖2).
思考發(fā)現:
小明在操作后發(fā)現,該剪拼方法就是先將△PEC繞點P逆時針旋轉180°到△PFD的位置,易知PE與PF在同一條直線上.又因為在梯形ABCD中,AD∥BC,∠C+∠ADP=180°,則∠FDP+∠ADP=180°,所以AD和DF在同一條直線上,那么構成的新圖形是一個四邊形,進而根據平行四邊形的判定方法,可以判斷出四邊形ABEF是一個平行四邊形,而且還是一個特殊的平行四邊形--矩形.
實踐探究:
(1)矩形ABEF的面積是
 
;(用含a,b,c的式子表示)
(2)類比圖2的剪拼方法,請你就圖3和圖4的兩種情形分別畫出剪拼成一個平行四邊形的示意圖.
精英家教網
聯(lián)想拓展:
小明通過探究后發(fā)現:在一個四邊形中,只要有一組對邊平行,就可以剪拼成平行四邊形.
如圖5的多邊形中,AE=CD,AE∥CD,能否象上面剪切方法一樣沿一條直線進行剪切,拼成一個平行四邊形?若能,請你在圖中畫出剪拼的示意圖并作必要的文字說明;若不能,簡要說明理由.
精英家教網

查看答案和解析>>

如圖1,在直角梯形ABCD中,AD∥BC,∠B=∠A=90°,AD=a,BC=b,AB=c,

操作示例:

 我們可以取直角梯形ABCD的非直角腰CD的中點P,過點P作PE∥AB,裁掉△PEC,并將△PEC繞點P逆時針旋轉180°拼接到△PFD的位置,構成新的圖形(如圖2).

思考發(fā)現:

判斷圖2中四邊形ABEF的形狀:          ;四邊形ABEF的面積是           。(用含字母的代數式表示)

實踐探究:

類比圖2的剪拼方法,請你就圖3(已知:AB∥DC)畫出剪拼成一個平行四邊形的示意圖.

聯(lián)想拓展:

小明通過探究后發(fā)現:在一個四邊形中,只要有一組對邊平行,就可以剪拼成平行四邊形

1.如圖4,在梯形ABCD中,AD∥BC,E是CD的中點, EF⊥AB于點F,AB=5,EF=4,求梯形ABCD的面積。

2.如圖5的多邊形中,AE=CD,AE∥CD,能否象上面剪切方法一樣沿一條直線進行剪切,拼成一平行四邊形?若能,請你在圖中畫出剪拼的示意圖并作必要的文字說明;若不能,簡要說明理由.

 

查看答案和解析>>

如圖1,在直角梯形ABCD中,AD∥BC,∠B=∠A=90°,AD=a,BC=b,AB=c,

操作示例:

 我們可以取直角梯形ABCD的非直角腰CD的中點P,過點P作PE∥AB,裁掉△PEC,并將△PEC繞點P逆時針旋轉180°拼接到△PFD的位置,構成新的圖形(如圖2).

思考發(fā)現:

判斷圖2中四邊形ABEF的形狀:          ;四邊形ABEF的面積是          。(用含字母的代數式表示)

實踐探究:

類比圖2的剪拼方法,請你就圖3(已知:AB∥DC)畫出剪拼成一個平行四邊形的示意圖.

聯(lián)想拓展:

小明通過探究后發(fā)現:在一個四邊形中,只要有一組對邊平行,就可以剪拼成平行四邊形

1.如圖4,在梯形ABCD中,AD∥BC,E是CD的中點, EF⊥AB于點F,AB=5,EF=4,求梯形ABCD的面積。

2.如圖5的多邊形中,AE=CD,AE∥CD,能否象上面剪切方法一樣沿一條直線進行剪切,拼成一平行四邊形?若能,請你在圖中畫出剪拼的示意圖并作必要的文字說明;若不能,簡要說明理由.

 

查看答案和解析>>

 

如圖1,在直角梯形ABCD中,AD∥BC,∠B=∠A=90°,AD=a,BC=b,AB=c,

操作示例:

 我們可以取直角梯形ABCD的非直角腰CD的中點P,過點P作PE∥AB,裁掉△PEC,并將△PEC繞點P逆時針旋轉180°拼接到△PFD的位置,構成新的圖形(如圖2).

思考發(fā)現:

判斷圖2中四邊形ABEF的形狀:         ;四邊形ABEF的面積是          。(用含字母的代數式表示)

實踐探究:

類比圖2的剪拼方法,請你就圖3(已知:AB∥DC)畫出剪拼成一個平行四邊形的示意圖.

聯(lián)想拓展:

小明通過探究后發(fā)現:在一個四邊形中,只要有一組對邊平行,就可以剪拼成平行四邊形.

如圖4,在梯形ABCD中,AD∥BC,E是CD的中點, EF⊥AB于點F,AB=5,EF=4,求梯形ABCD的面積。

如圖5的多邊形中,AE=CD,AE∥CD,能否象上面剪切方法一樣沿一條直線進行剪切,拼成一平行四邊形?若能,請你在圖中畫出剪拼的示意圖并作必要的文字說明;若不能,簡要說明理由.

 

查看答案和解析>>


同步練習冊答案