20.(14分)已知,,.
(1)當(dāng)時(shí),求的單調(diào)區(qū)間;
(2)求在點(diǎn)處的切線與直線及曲線所圍成的封閉圖形的面積;
(3)是否存在實(shí)數(shù),使的極大值為3?若存在,求出的值,若不存在,請(qǐng)說(shuō)明理由.
18.(14分) 已知圓方程為:.
(1)直線過(guò)點(diǎn),且與圓交于、兩點(diǎn),若,求直線的方程;
(2)過(guò)圓上一動(dòng)點(diǎn)作平行于軸的直線,設(shè)與軸的交點(diǎn)為,若向量,求動(dòng)點(diǎn)的軌跡方程,并說(shuō)明此軌跡是什么曲線.
19.(14分)如圖,在長(zhǎng)方體,點(diǎn)E在棱AB上移動(dòng),小螞蟻從點(diǎn)A沿長(zhǎng)方體的表面爬到點(diǎn)C1,所爬的最短路程為.
(1)求證:D1E⊥A1D;
(2)求AB的長(zhǎng)度;
(3)在線段AB上是否存在點(diǎn)E,使得二面角
。若存在,確定
點(diǎn)E的位置;若不存在,請(qǐng)說(shuō)明理由.
17. (12分)某公司有10萬(wàn)元資金用于投資,如果投資甲項(xiàng)目,根據(jù)市場(chǎng)分析知道:一年后可能獲利10﹪,可能損失10﹪,可能不賠不賺,這三種情況發(fā)生的概率分別為,,;如果投資乙項(xiàng)目,一年后可能獲利20﹪,也可能損失20﹪,這兩種情況發(fā)生的概率分別為.
(1)如果把10萬(wàn)元投資甲項(xiàng)目,用表示投資收益(收益=回收資金-投資資金),求的概率分布及;
(2)若把10萬(wàn)元投資投資乙項(xiàng)目的平均收益不低于投資甲項(xiàng)目的平均收益,求的取值范圍.
16. (12分)設(shè)函數(shù).
(1)求函數(shù)的最小正周期和單調(diào)遞增區(qū)間;
(2)當(dāng)時(shí),的最大值為2,求的值,并求出的對(duì)稱軸方程.
(二)選做題(13--15題,考生只能從中選作2題)
13.(坐標(biāo)系與參數(shù)方程選做題) (坐標(biāo)系與參數(shù)方程選做題)兩直線的位置關(guān)系是______(判斷垂直或平行或斜交)
14.(不等式選講選做題) 不等式對(duì)于一非零實(shí)數(shù)x均成立,則實(shí)數(shù)a的取值范圍是_________
15.(幾何證明選講選做題) 如圖所示,圓O的直徑AB=6,C為圓周上一點(diǎn),BC=3,過(guò)C作圓的切線,則點(diǎn)A到直線的距離AD為 .
(一)必做題(9--12題)
9.在的展開(kāi)式中,的系數(shù)是 .(用數(shù)字作答)
10.一個(gè)均勻小正方體的六個(gè)面中,三個(gè)面上標(biāo)以數(shù)0,兩個(gè)面上標(biāo)以數(shù)1,一個(gè)面上標(biāo)以數(shù)2,將這個(gè)小正方體拋擲2次,則向上的數(shù)之積為0的概率 .
11.如圖,該程序運(yùn)行后輸出的結(jié)果為 .
12.已知點(diǎn)滿足條件
的最大值為8,
則 .
8.已知,直線和曲線有兩個(gè)不同的交點(diǎn),它們圍成的平面區(qū)域?yàn)?sub>,向區(qū)域上隨機(jī)投一點(diǎn)A,點(diǎn)A落在區(qū)域內(nèi)的概率為,若,則實(shí)數(shù)的取值范圍為
A. B. C. D.
7.兩個(gè)正數(shù)、的等差中項(xiàng)是,一個(gè)等比中項(xiàng)是,且則雙曲線的離心率為
A. B. C. D.
6.如右圖,一個(gè)空間幾何體的主視圖和左視圖都是邊長(zhǎng)為1的正三角形,俯視圖是一個(gè)圓,那么幾何體的側(cè)面積為
A. B.
C. D.
5.已知函數(shù)的反函數(shù)滿足,則的最小值為
A.1 B. C. D.
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com