已知函數(shù)y=2sinωx(ω>0)在[-
π
3
π
4
]上單調遞增,則實數(shù)ω的取值范圍為( 。
A.(0,
3
2
]
B.(0,2)C.(0,1)D.(0,
3
4
]
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=2sinωx(ω>0)在[-
π
3
π
4
]上單調遞增,則實數(shù)ω的取值范圍為( 。
A、(0,
3
2
]
B、(0,2)
C、(0,1)
D、(0,
3
4
]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=2sinωx(ω>0)在[-
π
3
,
π
4
]
上單調遞增,則實數(shù)ω的取值范圍為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=2sinωx(ω>0)在[-
π
3
,
π
4
]
上單調遞增,則正實數(shù)ω的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知函數(shù)y=2sinωx(ω>0)在[-
π
3
,
π
4
]
上單調遞增,則實數(shù)ω的取值范圍為( 。
A.(0,
3
2
)
B.(0,2]C.(0,1]D.(0,
3
4
]

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知函數(shù)y=2sinωx(ω>0)在[-
π
3
π
4
]上單調遞增,則實數(shù)ω的取值范圍為( 。
A.(0,
3
2
]
B.(0,2)C.(0,1)D.(0,
3
4
]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2sin(ωx+?-
π
6
)(0<?<π,ω>0),
(1)若函數(shù)y=f(x)圖象的兩相鄰對稱軸間的距離為
π
2
,且它的圖象過(0,1)點,求函數(shù)y=f(x)的表達式;
(2)將(1)中的函數(shù)y=f(x)的圖象向右平移
π
6
個單位后,再將得到的圖象上各點的橫坐標伸長到原來的4倍,縱坐標不變,得到函數(shù)y=g(x)的圖象,求函數(shù)y=g(x)的單調遞增區(qū)間;
(3)若f(x)的圖象在x∈(a,a+
1
100
)(a∈R)上至少出現(xiàn)一個最高點或最低點,則正整數(shù)ω的最小值為多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2sinωx•cosωx+2
3
cos2ωx-
3
(其中ω>0)的周期為π.
(Ⅰ)求ω的值;
(Ⅱ)將函數(shù)y=f(x)的圖象向右平移
π
4
個單位長度,再將所得圖象各點的橫坐標縮小為原來的
1
2
(縱坐標不變)得到函數(shù)y=g(x)的圖象.求函數(shù)g(x)在[-
π
6
,
π
24
]
上的單調區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年浙江省臺州市天臺縣平橋中學高一(上)第二次診斷數(shù)學試卷(解析版) 題型:解答題

已知函數(shù)f(x)=2sin(ωx+ϕ-)(0<ϕ<π,ω>0),
(1)若函數(shù)y=f(x)圖象的兩相鄰對稱軸間的距離為,且它的圖象過(0,1)點,求函數(shù)y=f(x)的表達式;
(2)將(1)中的函數(shù)y=f(x)的圖象向右平移個單位后,再將得到的圖象上各點的橫坐標伸長到原來的4倍,縱坐標不變,得到函數(shù)y=g(x)的圖象,求函數(shù)y=g(x)的單調遞增區(qū)間;
(3)若f(x)的圖象在x∈(a,a+)(a∈R)上至少出現(xiàn)一個最高點或最低點,則正整數(shù)ω的最小值為多少?

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)f(x)=2sin(ωx+?-
π
6
)(0<?<π,ω>0),
(1)若函數(shù)y=f(x)圖象的兩相鄰對稱軸間的距離為
π
2
,且它的圖象過(0,1)點,求函數(shù)y=f(x)的表達式;
(2)將(1)中的函數(shù)y=f(x)的圖象向右平移
π
6
個單位后,再將得到的圖象上各點的橫坐標伸長到原來的4倍,縱坐標不變,得到函數(shù)y=g(x)的圖象,求函數(shù)y=g(x)的單調遞增區(qū)間;
(3)若f(x)的圖象在x∈(a,a+
1
100
)(a∈R)上至少出現(xiàn)一個最高點或最低點,則正整數(shù)ω的最小值為多少?

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)f(x)=cos(2x-
π
3
)+2sin(x-
π
4
)cos(x-
π
4
),x∈R
(Ⅰ)將f(x)化為f(x)=Asin(ωx+φ)+b,(A>0,ω>0,|φ|<π);
(Ⅱ)若對任意x∈[-
π
12
,
π
2
],都有f(x)≥a成立,求a的取值范圍;
(Ⅲ)若將y=f(x)的圖象先縱坐標不變,橫坐標變?yōu)樵瓉淼?倍,后向左平移
π
6
個單位得到函數(shù)y=g(x)的圖象,求函數(shù)y=g(x)-
1
3
在區(qū)間[-2π,4π]內所有零點之和.

查看答案和解析>>


同步練習冊答案