若點(diǎn)P(m-2,m+1)在直角坐標(biāo)系的x軸上,則點(diǎn)P的坐標(biāo)為( 。
A.(-3,0)B.(0,-3)C.(0,3)D.(3,0)
A
請(qǐng)?jiān)谶@里輸入關(guān)鍵詞:
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若點(diǎn)P()在直角坐標(biāo)系的軸上,則點(diǎn)P的坐標(biāo)為(    )
A.(0,-2)B.(2,0) C.(4,0)D.(0,-4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在直角坐標(biāo)系中,O是坐標(biāo)原點(diǎn),已知點(diǎn)P(3,
3
)
,點(diǎn)Q在x軸上,若△POQ是等腰三角形,則滿足條件的所有Q點(diǎn)的橫坐標(biāo)的和是( 。
A、2
B、2
3
C、8
D、2+4
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

27、在直角坐標(biāo)系中,橫、縱坐標(biāo)都為整數(shù)的點(diǎn)叫做整點(diǎn).設(shè)坐標(biāo)軸的單位長(zhǎng)為1厘為,整點(diǎn)P從原點(diǎn)O出發(fā),速度為1厘米/秒,且點(diǎn)P只能向上或向右運(yùn)動(dòng).
請(qǐng)回答下列問(wèn)題:
(1)填表;
(2)當(dāng)點(diǎn)P從點(diǎn)O出發(fā)4秒時(shí),可能得到的整點(diǎn)的坐標(biāo)是:
(4,0)(3,1)(2,2)(1,3)(0,4)

(3)當(dāng)點(diǎn)P從點(diǎn)O出發(fā)10秒時(shí),可得到的整點(diǎn)個(gè)數(shù)是
11
個(gè);
(4)當(dāng)點(diǎn)P從O點(diǎn)出發(fā)
15
秒時(shí),可得到整點(diǎn)(10,5);
(5)當(dāng)點(diǎn)P從點(diǎn)O出發(fā)30秒時(shí),整點(diǎn)P恰好在直線y=2x-6上,請(qǐng)求P點(diǎn)坐標(biāo);
(6)若設(shè)點(diǎn)P從點(diǎn)O出發(fā)的時(shí)間t(秒)時(shí),可能得到的整點(diǎn)個(gè)數(shù)為n,試寫出n與t之間的函數(shù)關(guān)系式,并寫出t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在直角坐標(biāo)系中,已知O(0,0),A(2,0),B(0,4),C(0,3),D為x軸上一點(diǎn).若以D、O、C為頂點(diǎn)的三角形與△AOB相似,這樣的D點(diǎn)有( 。
A、2個(gè)B、3個(gè)C、4個(gè)D、5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),點(diǎn)A的坐標(biāo)為(2,2),點(diǎn)C是線段OA上的一個(gè)動(dòng)點(diǎn)(不運(yùn)動(dòng)至O,A兩點(diǎn)),過(guò)點(diǎn)C作CD⊥x軸,垂足為D,以CD為邊作如圖所示的正方形CDEF.連接AF并延長(zhǎng)交x軸的正半軸于點(diǎn)B,連接OF.
精英家教網(wǎng)(1)猜想OD和DE之間的數(shù)量關(guān)系,并說(shuō)明理由;
(2)設(shè)OD=t,求OB的長(zhǎng)(用含t的代數(shù)式表示);
(3)若點(diǎn)B在E的右側(cè)時(shí),△BFE與△OFE能否相似?若能,請(qǐng)你求出此時(shí)經(jīng)過(guò)O,A,B三點(diǎn)的拋物線解析式;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)在直角坐標(biāo)系中,拋物線y=-
12
x2+mx-n與x軸交于A、B兩點(diǎn).與y軸交于C點(diǎn).已知A、B兩點(diǎn)都在x軸負(fù)半軸上(A左B右),△AOC與△COB相似,且tan∠CBO=4tan∠BCO.
(1)求拋物線的解析式;
(2)若此拋物線的對(duì)稱軸與直線y=nx交于D.以D為圓心,作與x軸相切的圓,交y軸于M、N兩點(diǎn).求劣弧MN所對(duì)的弓形面積;
(3)在y軸上是否存在一點(diǎn)F,使得FD+FA的值最小,若存在,求出△ABF的面積,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),點(diǎn)A的坐標(biāo)是(1,1),若點(diǎn)P在x軸上,且△APO是等腰三角形,則點(diǎn)P的坐標(biāo)不可能是( 。
A、(
2
,0)
B、(1,0)
C、(-
2
,0)
D、(-1,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)在直角坐標(biāo)系中,直線L1的解析式為y=2x-1,直線L2過(guò)原點(diǎn)且L2與直線L1交于點(diǎn)P(-2,a).
(1)試求a的值;
(2)試問(wèn)(-2,a)可以看作是怎樣的二元一次方程組的解;
(3)設(shè)直線L1與x軸交于點(diǎn)A,你能求出△APO的面積嗎?試試看;
(4)在直線L1上是否存在點(diǎn)M,使點(diǎn)M到x軸和y軸的距離相等?若存在,求出點(diǎn)M的坐標(biāo);不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)在直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),點(diǎn)A的坐標(biāo)為(2,2),點(diǎn)C是線段OA上的一個(gè)動(dòng)點(diǎn)(不運(yùn)動(dòng)至O,A兩點(diǎn)),過(guò)點(diǎn)C作CD⊥x軸,垂足為D,以CD為邊在右側(cè)作正方形CDEF.連接AF并延長(zhǎng)交x軸的正半軸于點(diǎn)B,連接OF,設(shè)OD=t.
(1)求tan∠FOB的值;
(2)用含t的代數(shù)式表示△OAB的面積S;
(3)是否存在點(diǎn)B,使以B,E,F(xiàn)為頂點(diǎn)的三角形與△OFE相似?若存在,請(qǐng)求出所有滿足要求的B點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)在直角坐標(biāo)系中,⊙A的半徑為4,圓心A的坐標(biāo)為(2,0),⊙A與x軸交于E、F兩點(diǎn),與y軸交于C、D兩點(diǎn),過(guò)點(diǎn)C作⊙A的切線BC,交x軸于點(diǎn)B.
(1)求直線CB的解析式;
(2)若拋物線y=ax2+bx+c的頂點(diǎn)在直線BC上,與x軸的交點(diǎn)恰為點(diǎn)E、F,求該拋物線的解析式;
(3)試判斷點(diǎn)C是否在拋物線上;
(4)在拋物線上是否存在三個(gè)點(diǎn),由它構(gòu)成的三角形與△AOC相似?直接寫出兩組這樣的點(diǎn).

查看答案和解析>>


同步練習(xí)冊(cè)答案