已知f(
1
x
)=
1-x
1+x
,則f(x)+f(
1
x
)=( 。
A.
1-x
1+x
B.
1
x
C.1D.0
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(
1
x
)=
1-x
1+x
,則f(x)+f(
1
x
)=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知f(
1
x
)=
1-x
1+x
,則f(x)+f(
1
x
)=( 。
A.
1-x
1+x
B.
1
x
C.1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f (
1
x
)=
1
x+1
,則f (x)的解析式為( 。
A、f(x)=
1
1+x
B、f (x)=
1+x
x
C、f (x)=
x
1+x
D、f (x)=1+x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(
2
x
+1
)=x+3,則f(x)的解析式可。ā 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知f(
2
x
+1
)=x+3,則f(x)的解析式可。ā 。
A.
3x-1
x-1
B.
3x+1
x-1
C.
2x
1+x2
D.-
x
1+x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

f(x)是定義在D上的函數(shù),若對任何實(shí)數(shù)α∈(0,1)以及D中的任意兩數(shù)x1,x2,恒有f(αx1+(1-α)x2)≤αf(x1)+(1-α)f(x2),則稱f(x)為定義在D上的C函數(shù).
(Ⅰ)試判斷函數(shù)f1(x)=x2,f2(x)=
1x
(x<0)
中哪些是各自定義域上的C函數(shù),并說明理由;
(Ⅱ)已知f(x)是R上的C函數(shù),m是給定的正整數(shù),設(shè)an=f(n),n=0,1,2,…,m,且a0=0,am=2m,記Sf=a1+a2+…+am.對于滿足條件的任意函數(shù)f(x),試求Sf的最大值;
(Ⅲ)若(Ⅱ)中Sf的最大值記為h(m),且h(1)+h(2)+…+h(m)≤a對任意給定的正整數(shù)m恒成立,試求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(
1
x
)=
x
1-x
,則f(x)的解析式為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)是定義在區(qū)間D上的函數(shù),若對任何實(shí)數(shù)α∈(0,1)以及D中的任意兩個實(shí)數(shù)x1,x2,恒有f(αx1+(1-α)x2)≤αf(x1)+(1-α)f(x2),則稱f(x)為定義在D上的C函數(shù).
(Ⅰ)試判斷函數(shù)f1(x)=x2,f2=
1x
(x<0)
是否為各自定義域上的C函數(shù),并說明理由;
(Ⅱ)已知f(x)是R上的C函數(shù),m是給定的正整數(shù),設(shè)an=fn,n=0,1,2,…,m,且a0=0,am=2m.記Sf=a1+a2+…+am對于滿足條件的任意函數(shù)f(x),試求Sf的最大值;
(Ⅲ)若g(x)是定義域?yàn)镽的函數(shù),且最小正周期為T,試證明g(x)不是R上的C函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知以下四個命題:
①如果x1,x2是一元二次方程ax2+bx+c=0的兩個實(shí)根,且x1<x2,那么不等式ax2+bx+c<0的解集為{x|x1<x<x2}.
②若
x-1x-2
≤0
,則(x-1)(x-2)≤0.
③“若M={-1,0,1},則x2-2x+m>0的解集是實(shí)數(shù)集R”的逆否命題.
④若函數(shù)f(x)在(-∞,+∞)上遞增,且a+b≥0,則f(a)+f(b)≥f(-a)+f(-b).
其中為真命題的是
 
(填上你認(rèn)為正確的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax2+
1
x
-2lnx
(x>0).
(Ⅰ)若f(x)在[1,+∞)上單調(diào)遞增,求實(shí)數(shù)a的取值范圍;
(Ⅱ)若定義在區(qū)間D上的函數(shù)y=g(x)對于區(qū)間D上的任意兩個值x1、x2,總有不等式
1
2
[g(x1)+g(x2)]≥g(
x1+x2
2
)
成立,則稱函數(shù)y=g(x)為區(qū)間D上的“凸函數(shù)”.試證當(dāng)a≥0時,f(x)為“凸函數(shù)”.

查看答案和解析>>


同步練習(xí)冊答案