設(shè)函數(shù)f(x)=
2x
|x|+1
(x∈R)
,區(qū)間M=[a,b](其中a<b),集合N={y|y=f(x),x∈M},則使M=N成立的實數(shù)對(a,b)有( 。
A.1個B.3個C.2個D.0個
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
2x|x|+1
(x∈R)
,區(qū)間M=[a,b](其中a<b)集合N={y|y=f(x),x∈M},則使M=N成立的實數(shù)對(a,b)有
 
個.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
2x
|x|+1
(x∈R)
,區(qū)間M=[a,b](其中a<b),集合N={y|y=f(x),x∈M},則使M=N成立的實數(shù)對(a,b)有(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)函數(shù)f(x)=
2x
|x|+1
(x∈R)
,區(qū)間M=[a,b](其中a<b),集合N={y|y=f(x),x∈M},則使M=N成立的實數(shù)對(a,b)有( 。
A.1個B.3個C.2個D.0個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:江蘇模擬 題型:填空題

設(shè)函數(shù)f(x)=
2x
|x|+1
(x∈R)
,區(qū)間M=[a,b](其中a<b)集合N={y|y=f(x),x∈M},則使M=N成立的實數(shù)對(a,b)有______個.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
2x-a
x2+2
(x∈R)
在區(qū)間[-1,1]上是增函數(shù)
( I)求實數(shù)a的取值范圍;
( II)記實數(shù)a的取值范圍為集合A,且設(shè)關(guān)于x的方程f(x)=
1
x
的兩個非零實根為x1,x2
①求|x1-x2|的最大值;
②試問:是否存在實數(shù)m,使得不等式m2+tm+1>|x1-x2|對?a∈A及t∈[-1,1]恒成立?若存在,求m的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2x-a
x2+2
(x∈R).
(1)當(dāng)f(1)=1時,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)設(shè)關(guān)于x的方程f(x)=
1
x
的兩個實根為x1,x2,且-1≤a≤1,求|x1-x2|的最大值;
(3)在(2)的條件下,若對于[-1,1]上的任意實數(shù)t,不等式m2+tm+1≥|x1-x2|恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=alnx-ax-3(a∈R).
(1)當(dāng)a=1時,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)y=f(x)的圖象在點(2,f(2))處的切線的傾斜角為45°,問:m在什么范圍取值時,函數(shù)g(x)=x3+x2[
m
2
+f′(x)]
在區(qū)間(2,3)上總存在極值?
(3)當(dāng)a=2時,設(shè)函數(shù)g(x)=(ρ-2)x+
ρ+2
x
-3
,若對任意地x∈[1,2],f(x)≥g(x)恒成立,求實數(shù)p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:濟南二模 題型:解答題

已知函數(shù)f(x)=
2x-a
x2+2
(x∈R).
(1)當(dāng)f(1)=1時,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)設(shè)關(guān)于x的方程f(x)=
1
x
的兩個實根為x1,x2,且-1≤a≤1,求|x1-x2|的最大值;
(3)在(2)的條件下,若對于[-1,1]上的任意實數(shù)t,不等式m2+tm+1≥|x1-x2|恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=alnx-ax-3(a∈R).
(1)當(dāng)a=1時,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)y=f(x)的圖象在點(2,f(2))處的切線的傾斜角為45°,問:m在什么范圍取值時,函數(shù)g(x)=x3+x2[
m
2
+f′(x)]
在區(qū)間(2,3)上總存在極值?
(3)當(dāng)a=2時,設(shè)函數(shù)g(x)=(ρ-2)x+
ρ+2
x
-3
,若對任意地x∈[1,2],f(x)≥g(x)恒成立,求實數(shù)p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:廣東模擬 題型:解答題

已知函數(shù)f(x)=4x+ax2-
2
3
x3(x∈R)

(1)若a=1,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)在區(qū)間[-1,1]上單調(diào)遞增,求實數(shù)a的取值組成的集合A;
(3)設(shè)關(guān)于x的方程f(x)=2x+
1
3
x3
的兩個非零實根為x1,x2,試問是否存在實數(shù)m,使得不等式m2+tm+1≥|x1-x2|對任意a∈A及t∈[-1,1]恒成立?若存在,求出m的取值范圍;若不存在,請說明理由.

查看答案和解析>>


同步練習(xí)冊答案