a是實常數(shù),函數(shù)f(x)對于任何的非零實數(shù)x都有f(
1
x
)=af(x)-x-1,且f(1)=1
,則不等式f(x)-x≥0的解集為(  )
A.(-∞,-
1
5
]∪(0,1]
B.(-∞,-
1
5
]∪[1,+∞)
C.[-
1
5
,0∪(0,1]
D.[-
1
5
,0)∪[1,+∞)
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

a是實常數(shù),函數(shù)f(x)對于任何的非零實數(shù)x都有f(
1
x
)=af(x)-x-1,且f(1)=1
,則不等式f(x)-x≥0的解集為( 。
A、(-∞,-
1
5
]∪(0,1]
B、(-∞,-
1
5
]∪[1,+∞)
C、[-
1
5
,0∪(0,1]
D、[-
1
5
,0)∪[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年四川省成都市樹德中學(xué)高三(下)入學(xué)數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

a是實常數(shù),函數(shù)f(x)對于任何的非零實數(shù)x都有,則不等式f(x)-x≥0的解集為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年江西省新余四中高三第二次段考數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

a是實常數(shù),函數(shù)f(x)對于任何的非零實數(shù)x都有,則不等式f(x)-x≥0的解集為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年江西省吉安市高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:選擇題

a是實常數(shù),函數(shù)f(x)對于任何的非零實數(shù)x都有,則不等式f(x)-x≥0的解集為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年北京市東城區(qū)東直門中學(xué)高考數(shù)學(xué)提高測試試卷6(理科)(解析版) 題型:選擇題

a是實常數(shù),函數(shù)f(x)對于任何的非零實數(shù)x都有,則不等式f(x)-x≥0的解集為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:吉安二模 題型:單選題

a是實常數(shù),函數(shù)f(x)對于任何的非零實數(shù)x都有f(
1
x
)=af(x)-x-1,且f(1)=1
,則不等式f(x)-x≥0的解集為( 。
A.(-∞,-
1
5
]∪(0,1]
B.(-∞,-
1
5
]∪[1,+∞)
C.[-
1
5
,0∪(0,1]
D.[-
1
5
,0)∪[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

a是實常數(shù),函數(shù)f(x)對于任何的非零實數(shù)x都有數(shù)學(xué)公式,則不等式f(x)-x≥0的解集為


  1. A.
    數(shù)學(xué)公式
  2. B.
    數(shù)學(xué)公式
  3. C.
    數(shù)學(xué)公式
  4. D.
    數(shù)學(xué)公式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若a是實常數(shù),函數(shù)f(x)對于任何的非零實數(shù)x都有f(
1
x
)=af(x)-x-1
,且f(1)=1,則函數(shù)F(x)=f(x)(x∈D={x|x∈R,x>0,f(x)≥x})的取值范圍是
[
1
2
+
3
4
,+∞)
[
1
2
+
3
4
,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年遼寧省丹東市寬甸二中高三(上)期末數(shù)學(xué)試卷(解析版) 題型:填空題

若a是實常數(shù),函數(shù)f(x)對于任何的非零實數(shù)x都有,且f(1)=1,則函數(shù)F(x)=f(x)(x∈D={x|x∈R,x>0,f(x)≥x})的取值范圍是   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若a是實常數(shù),函數(shù)f(x)對于任何的非零實數(shù)x都有f(
1
x
)=af(x)-x-1
,且f(1)=1,則函數(shù)F(x)=f(x)(x∈D={x|x∈R,x>0,f(x)≥x})的取值范圍是______.

查看答案和解析>>


同步練習(xí)冊答案