已知函數(shù)f(x)=x-
a
x
(a>0),有下列四個命題:
①f(x)的值域是(-∞,0)∪(0,+∞);
②f(x)是奇函數(shù);
③f(x)在(-∞,0)∪(0,+∞)上單調(diào)遞增;
④方程|f(x)|=a總有四個不同的解,其中正確的是( 。
A.僅②④B.僅②③C.僅①②D.僅③④
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x-
a
x
(a>0),有下列四個命題:
①f(x)的值域是(-∞,0)∪(0,+∞);
②f(x)是奇函數(shù);
③f(x)在(-∞,0)∪(0,+∞)上單調(diào)遞增;
④方程|f(x)|=a總有四個不同的解,其中正確的是( 。
A、僅②④B、僅②③
C、僅①②D、僅③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:閔行區(qū)一模 題型:單選題

已知函數(shù)f(x)=x-
a
x
(a>0),有下列四個命題:
①f(x)的值域是(-∞,0)∪(0,+∞);
②f(x)是奇函數(shù);
③f(x)在(-∞,0)∪(0,+∞)上單調(diào)遞增;
④方程|f(x)|=a總有四個不同的解,其中正確的是(  )
A.僅②④B.僅②③C.僅①②D.僅③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2008-2009學(xué)年重慶市渝中區(qū)巴蜀中學(xué)高三(上)月考數(shù)學(xué)試卷(文理合卷)(解析版) 題型:填空題

有下列四個命題:
的最小值是;
②已知,則f(4)<f(3);
③y=loga(2+ax)(a>0,a≠1)在定義域R上是增函數(shù);
④定義在實數(shù)集R上的奇函數(shù)f(x)滿足f(x+1)=-f(x),則f(2)=0.
其中,真命題的序號是    .(把你認(rèn)為正確命題的序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年浙江省溫州市蒼南中學(xué)高三(上)期中數(shù)學(xué)試卷(解析版) 題型:填空題

有下列四個命題:
的最小值是;
②已知,則f(4)<f(3);
③y=loga(2+ax)(a>0,a≠1)在定義域R上是增函數(shù);
④定義在實數(shù)集R上的奇函數(shù)f(x)滿足f(x+1)=-f(x),則f(2)=0.
其中,真命題的序號是    .(把你認(rèn)為正確命題的序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年安徽省阜陽市潁上一中高考數(shù)學(xué)三模試卷(理科)(解析版) 題型:填空題

有下列四個命題:
的最小值是;
②已知,則f(4)<f(3);
③y=loga(2+ax)(a>0,a≠1)在定義域R上是增函數(shù);
④定義在實數(shù)集R上的奇函數(shù)f(x)滿足f(x+1)=-f(x),則f(2)=0.
其中,真命題的序號是    .(把你認(rèn)為正確命題的序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x-
a
x
(a>0)
,有下列四個命題:
①f(x)是奇函數(shù);
②f(x)的值域是(-∞,0)∪(0,+∞);
③方程|f(x)|=a總有四個不同的解;
④f(x)在(-∞,0)∪(0,+∞)上單調(diào)遞增.
其中正確的是( 。
A、僅②④B、僅②③
C、僅①③D、僅③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x-
ax
(a>0)
,有下列四個命題:
①f(x)是奇函數(shù);
②f(x)的值域是(-∞,0)∪(0,+∞);
③f(x)在(-∞,0),(0,+∞)上單調(diào)遞減;
④f(x)零點個數(shù)為2個;
⑤方程|f(x)|=a總有四個不同的解.
其中正確的是
 
.(把所有正確命題的序號填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知函數(shù)f(x)=x-
a
x
(a>0)
,有下列四個命題:
①f(x)是奇函數(shù);
②f(x)的值域是(-∞,0)∪(0,+∞);
③f(x)在(-∞,0),(0,+∞)上單調(diào)遞減;
④f(x)零點個數(shù)為2個;
⑤方程|f(x)|=a總有四個不同的解.
其中正確的是______.(把所有正確命題的序號填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有下列四個命題:
y=sin2x+
3
sin2x
的最小值是2
3
;
②已知f(x)=
x-
11
x-
10
,則f(4)<f(3);
③y=loga(2+ax)(a>0,a≠1)在定義域R上是增函數(shù);
④定義在實數(shù)集R上的奇函數(shù)f(x)滿足f(x+1)=-f(x),則f(2)=0.
其中,真命題的序號是
②③④
②③④
.(把你認(rèn)為正確命題的序號都填上)

查看答案和解析>>


同步練習(xí)冊答案