設雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的半焦距為c,離心率為
5
4
.若直線y=kx與雙曲線的一個交點的橫坐標恰為c,則k等于( 。
A.±
4
5
B.±
3
5
C.±
9
20
D.±
9
25
相關習題

科目:高中數(shù)學 來源: 題型:

設雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的漸近線與拋物線y=x2+1相切,則該雙曲線的離心率等于( 。
A、
3
B、2
C、
5
D、
6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的半焦距為c,離心率為
5
4
.若直線y=kx與雙曲線的一個交點的橫坐標恰為c,則k等于( 。
A、±
4
5
B、±
3
5
C、±
9
20
D、±
9
25

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的虛軸長為2,焦距為2
3
,則雙曲線的漸近線方程為( 。
A、y=±
2
x
B、y=±2x
C、y=±
2
2
x
D、y=±
1
2
x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的左、右焦點分別是F1、F2,過點F2的直線交雙曲線右支于不同的兩點M、N.若△MNF1為正三角形,則該雙曲線的離心率為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的離心率為e=
2
,右焦點為f(c,0),方程ax2-bx-c=0的兩個實根分別為x1和x2,則點P(x1,x2)(  )
A、在圓x2+y2=8外
B、在圓x2+y2=8上
C、在圓x2+y2=8內(nèi)
D、不在圓x2+y2=8內(nèi)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的半焦距為c.已知原點到直線l:bx+ay=ab的距離等于
1
4
c+1
,則c的最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的右焦點為F(c,0),方程ax2+bx-c=0的兩實根分別為x1,x2,則P(x1,x2)( 。
A、必在圓x2+y2=2內(nèi)
B、必在圓x2+y2=2外
C、必在圓x2+y2=2上
D、以上三種情況都有可能

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的左、右焦點分別為F1(-c,0)、F2(c,0),c>0,若以F1F2為斜邊的等腰直角三角形F1AF2的直角邊的中點在雙曲線上,則
c
a
等于
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的離心率e∈[
2,
2]
,則兩條漸近線夾角的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的右焦點為F,右準線l與兩條漸近線交于P,Q兩點,如果△PQF是直角三角形,則雙曲線的離心率為(  )
A、2
B、
3
C、
2
D、
3
3

查看答案和解析>>


同步練習冊答案