已知拋物線(xiàn)y=ax2+bx+c(a≠0)的對(duì)稱(chēng)軸為直線(xiàn)x=2,且經(jīng)過(guò)點(diǎn)P(3,0),則拋物線(xiàn)與x軸的另一個(gè)交點(diǎn)坐標(biāo)為( 。
A.(-1,0)B.(0,0)C.(1,0)D.(3,0)
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線(xiàn)L:y=ax2+bx+c(其中a、b、c都不等于0),它的頂點(diǎn)P的坐標(biāo)是(-
b
2a
,
4ac-b2
4a
)
,與y軸的交點(diǎn)是M(0,c).我們稱(chēng)以M為頂點(diǎn),對(duì)稱(chēng)軸是y軸且過(guò)點(diǎn)P的拋物線(xiàn)為拋物線(xiàn)L的伴隨拋物線(xiàn),直線(xiàn)PM為L(zhǎng)的伴隨直線(xiàn).
(1)請(qǐng)直接寫(xiě)出拋物線(xiàn)y=2x2-4x+1的伴隨拋物線(xiàn)和伴隨直線(xiàn)的解析式:
伴隨拋物線(xiàn)的解析式
 
,伴隨直線(xiàn)的解析式
 
;
(2)若一條拋物線(xiàn)的伴隨拋物線(xiàn)和伴隨直線(xiàn)分別是y=-x2-3和y=-x-3,則這條拋物線(xiàn)的解析式是
 

(3)求拋物線(xiàn)L:y=ax2+bx+c(其中a、b、c都不等于0)的伴隨拋物線(xiàn)和伴隨直線(xiàn)的解析式;
(4)若拋物線(xiàn)L與x軸交于A(x1,0)、B(x2,0)兩點(diǎn),x2>x1>0,它的伴隨拋物線(xiàn)與x軸交于C、D兩點(diǎn),且AB=CD.請(qǐng)求出a、b、c應(yīng)滿(mǎn)足的條件.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線(xiàn)y=ax2+bx+c與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,其中點(diǎn)B在x軸的正精英家教網(wǎng)半軸上,點(diǎn)C在y軸的正半軸上,線(xiàn)段OB、OC的長(zhǎng)(OB<OC)是方程x2-10x+16=0的兩個(gè)根,且拋物線(xiàn)的對(duì)稱(chēng)軸是直線(xiàn)x=-2.
(1)求A、B、C三點(diǎn)的坐標(biāo);
(2)求此拋物線(xiàn)的表達(dá)式;
(3)連接AC、BC,若點(diǎn)E是線(xiàn)段AB上的一個(gè)動(dòng)點(diǎn)(與點(diǎn)A、點(diǎn)B不重合),過(guò)點(diǎn)E作EF∥AC交BC于點(diǎn)F,連接CE,設(shè)AE的長(zhǎng)為m,△CEF的面積為S,求S與m之間的函數(shù)關(guān)系式,并寫(xiě)出自變量m的取值范圍;
(4)在(3)的基礎(chǔ)上試說(shuō)明S是否存在最大值?若存在,請(qǐng)求出S的最大值,并求出此時(shí)點(diǎn)E的坐標(biāo),判斷此時(shí)△BCE的形狀;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線(xiàn)y=ax2+bx(a≠0)的頂點(diǎn)在直線(xiàn)y=-
12
x-1
上,且過(guò)點(diǎn)A(4,0).
(1)求這個(gè)拋物線(xiàn)的解析式;
(2)設(shè)拋物線(xiàn)的頂點(diǎn)為P,是否在拋物線(xiàn)上存在一點(diǎn)B,使四邊形OPAB為梯形?若存在,求出點(diǎn)B的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)設(shè)點(diǎn)C(1,-3),請(qǐng)?jiān)趻佄锞(xiàn)的對(duì)稱(chēng)軸確定一點(diǎn)D,使|AD-CD|的值最大,請(qǐng)直接寫(xiě)出點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線(xiàn)C:y=x2-(m+1)x+1的頂點(diǎn)在坐標(biāo)軸上.
(1)求m的值;
(2)m>0時(shí),拋物線(xiàn)C向下平移n(n>0)個(gè)單位后與拋物線(xiàn)C1:y=ax2+bx+c關(guān)于y軸對(duì)稱(chēng),且C1過(guò)點(diǎn)(n,3),求C1的函數(shù)關(guān)系式;
(3)-3<m<0時(shí),拋物線(xiàn)C的頂點(diǎn)為M,且過(guò)點(diǎn)P(1,y0).問(wèn)在直線(xiàn)x=-1上是否存在一點(diǎn)Q使得△QPM的周長(zhǎng)最小,如果存在,求出點(diǎn)Q的坐標(biāo),如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線(xiàn)y=ax2+bx+c的圖象交x軸于點(diǎn)A(x0,0)和點(diǎn)B(2,0),與y軸的正半軸交于點(diǎn)C,其對(duì)稱(chēng)軸是直線(xiàn)x=-1,tan∠BAC=2,點(diǎn)A關(guān)于y軸的對(duì)稱(chēng)點(diǎn)為點(diǎn)D.
(1)確定A、C、D三點(diǎn)的坐標(biāo);
(2)求過(guò)B、C、D三點(diǎn)的拋物線(xiàn)的解析式;
(3)若過(guò)點(diǎn)(0,3)且平行于x軸的直線(xiàn)與(2)小題中所求拋物線(xiàn)交于M、N兩點(diǎn),以MN為一邊,拋物線(xiàn)上任意一點(diǎn)P(x,y)為頂點(diǎn)作平行四邊形,若平行四邊形的面積為S,寫(xiě)出S關(guān)于P點(diǎn)縱坐標(biāo)y的函數(shù)解析式;
(4)當(dāng)
12
<x<4時(shí),(3)小題中平行四邊形的面積是否有最大值?若有,請(qǐng)求出;若無(wú),請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線(xiàn)y=ax2+bx+c(a≠0)經(jīng)過(guò)點(diǎn)B(2,0)和點(diǎn)C(0,8),且它的對(duì)稱(chēng)軸是直精英家教網(wǎng)線(xiàn)x=-2.
(1)求拋物線(xiàn)與x軸的另一交點(diǎn)A的坐標(biāo);
(2)求此拋物線(xiàn)的解析式;
(3)連接AC,BC,若點(diǎn)E是線(xiàn)段AB上的一個(gè)動(dòng)點(diǎn)(與點(diǎn)A,點(diǎn)B)不重合,過(guò)點(diǎn)E作EF∥AC交BC于點(diǎn)F,連接CE,設(shè)AE的長(zhǎng)為m,△CEF的面積為S,求S與m之間的函數(shù)關(guān)系式;
(4)在(3)的基礎(chǔ)上試說(shuō)明S是否存在最大值?若存在,請(qǐng)求出S的最大值,并求出此時(shí)點(diǎn)E的坐標(biāo),判斷此時(shí)△BCE的形狀;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線(xiàn)y=ax2+bx+c(a≠0)與x軸交于不同的兩點(diǎn)A和B(4,0),與y軸交于點(diǎn)C(0,8),其對(duì)稱(chēng)軸為x=1.
(1)求此拋物線(xiàn)的解析式;
(2)過(guò)A、B、C三點(diǎn)作⊙O′與y軸的負(fù)半軸交于點(diǎn)D,求經(jīng)過(guò)原點(diǎn)O且與直線(xiàn)AD垂直(垂足為E)的直線(xiàn)OE的方程;
(3)設(shè)⊙O′與拋物線(xiàn)的另一個(gè)交點(diǎn)為P,直線(xiàn)OE與直線(xiàn)BC的交點(diǎn)為Q,直線(xiàn)x=m與拋物線(xiàn)的交點(diǎn)為R,直線(xiàn)x=m與直線(xiàn)OE的交點(diǎn)為S.是否存在整數(shù)m,使得以點(diǎn)P、Q、R、S為頂點(diǎn)的四邊形為平行四邊形?若存在,求出m的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線(xiàn)L:y=ax2+bx+c(其中a,b,c都不等于0),它的頂點(diǎn)坐標(biāo)P(-
b
2a
,
4ac-b2
4a
),與y軸的交點(diǎn)是M(0,c).我們稱(chēng)以M為頂點(diǎn),對(duì)稱(chēng)軸是y軸且過(guò)點(diǎn)P的拋物線(xiàn)為拋物線(xiàn)L的伴隨拋物線(xiàn),直線(xiàn)PM為L(zhǎng)的伴隨直線(xiàn).已知有一拋物線(xiàn)y=-2x2+4x+1,求它的伴隨直線(xiàn)和伴隨拋物線(xiàn)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

24、已知拋物線(xiàn)y=x2-2x+m與x軸交于點(diǎn)A(x1,0)、B(x2,0)(x2>x1),
(1)若點(diǎn)P(-1,2)在拋物線(xiàn)y=x2-2x+m上,求m的值;
(2)若拋物線(xiàn)y=ax2+bx+m與拋物線(xiàn)y=x2-2x+m關(guān)于y軸對(duì)稱(chēng),點(diǎn)Q1(-2,q1)、Q2(-3,q2)都在拋物線(xiàn)y=ax2+bx+m上,則q1、q2的大小關(guān)系是
;
(請(qǐng)將結(jié)論寫(xiě)在橫線(xiàn)上,不要寫(xiě)解答過(guò)程);(友情提示:結(jié)論要填在答題卡相應(yīng)的位置上)
(3)設(shè)拋物線(xiàn)y=x2-2x+m的頂點(diǎn)為M,若△AMB是直角三角形,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線(xiàn)C1:y=-x2+2mx+n(m,n為常數(shù),且m≠0,n>0)的頂點(diǎn)為A,與y軸交于點(diǎn)C;拋物線(xiàn)C2與拋物線(xiàn)C1關(guān)于y軸對(duì)稱(chēng),其頂點(diǎn)為B,連接AC,BC,AB.
注:拋物線(xiàn)y=ax2+bx+c(a≠0)的頂點(diǎn)坐標(biāo)為(-
b
2a
,
4ac-b2
4a
)

(1)請(qǐng)?jiān)跈M線(xiàn)上直接寫(xiě)出拋物線(xiàn)C2的解析式:
 

(2)當(dāng)m=1時(shí),判定△ABC的形狀,并說(shuō)明理由;
(3)拋物線(xiàn)C1上是否存在點(diǎn)P,使得四邊形ABCP為菱形?如果存精英家教網(wǎng)在,請(qǐng)求出m的值;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>


同步練習(xí)冊(cè)答案