?ABCD中,∠A:∠B=1:2,則∠C的度數(shù)為( 。
A.30°B.45°C.60°D.120°
C
請?jiān)谶@里輸入關(guān)鍵詞:
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

?ABCD中,∠A:∠B=1:2,則∠C的度數(shù)為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

?ABCD中,∠A:∠B=1:2,則∠C的度數(shù)為( 。
A.30°B.45°C.60°D.120°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

18、四邊形ABCD中,∠A比∠B大40°,∠C比∠B小10°,∠D=30°,求∠A、∠B、∠C的度數(shù).
解:設(shè)∠B=x,則∠A=
x+40°
,∠C=
x-10°
,
根據(jù)四邊形內(nèi)角和為
360°
°得:
x+(x+40°)+(x-10°)+30°=360°

解得x=
100°

所以∠B=
100°
,∠A=
140°
,∠C=
90°

答:
∠B=100°,∠A=140°,∠C=90°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知四邊形ABCD中,AD∥BC,AB=AD,∠ABC=2∠C=2α,點(diǎn)E在AD上,點(diǎn)F在DC上.
(1)如圖1,若α=45°,∠BDC的度數(shù)為
90°
90°
;
(2)如圖2,當(dāng)α=45°,∠BEF=90°時,求證:EB=EF;
(3)如圖3,若α=30°,則當(dāng)∠BEF=
120°
120°
時,使得EB=EF成立?(請直接寫出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知:如圖:在?ABCD中,CE⊥AB,E為垂足,如果∠A=125°,則∠BCE的度數(shù)是( 。
A.25°B.30°C.35°D.55°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•平南縣二模)已知:如圖:在?ABCD中,CE⊥AB,E為垂足,如果∠A=125°,則∠BCE的度數(shù)是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

唐朝詩人李欣的詩《古從軍行》開頭兩句說:“白日登山望峰火,黃昏飲馬傍交河.”詩中隱含著一個有趣的數(shù)學(xué)問題--將軍飲馬問題:
如圖1所示,詩中將軍在觀望烽火之后從山腳下的A點(diǎn)出發(fā),走到河旁邊的P點(diǎn)飲馬后再到B點(diǎn)宿營.請問怎樣走才能使總的路程最短?
作法如下:如(1)圖,從B出發(fā)向河岸引垂線,垂足為D,在AP的延長線上,取B關(guān)于河岸的對稱點(diǎn)B′,連接AB′,與河岸線相交于P,則P點(diǎn)就是飲馬的地方,將軍只要從A出發(fā),沿直線走到P,飲馬之后,再由P沿直線走到B,所走的路程就是最短的.
(1)觀察發(fā)現(xiàn)
再如(2)圖,在等腰梯形ABCD中,AB=CD=AD=2,∠D=120°,點(diǎn)E、F是底邊AD與BC的中點(diǎn),連接EF,在線段EF上找一點(diǎn)P,使BP+AP最短.
作點(diǎn)B關(guān)于EF的對稱點(diǎn),恰好與點(diǎn)C重合,連接AC交EF于一點(diǎn),則這點(diǎn)就是所求的點(diǎn)P,故BP+AP的最小值為
 

精英家教網(wǎng)
(2)實(shí)踐運(yùn)用
如(3)圖,已知⊙O的直徑MN=1,點(diǎn)A在圓上,且∠AMN的度數(shù)為30°,點(diǎn)B是弧AN的中點(diǎn),點(diǎn)P在直徑MN上運(yùn)動,求BP+AP的最小值.
精英家教網(wǎng)
(3)拓展遷移
如圖,已知拋物線y=ax2+bx+c(a≠0)的對稱軸為x=1,且拋物線經(jīng)過A(-1,0)、C(0,-3)兩點(diǎn),與x軸交于另一點(diǎn)B.
①求這條拋物線所對應(yīng)的函數(shù)關(guān)系式;
②在拋物線的對稱軸直線x=1上找到一點(diǎn)M,使△ACM周長最小,請求出此時點(diǎn)M的坐標(biāo)與△ACM周長最小值.(結(jié)果保留根號)
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

唐朝詩人李欣的詩《古從軍行》開頭兩句說:“白日登山望峰火,黃昏飲馬傍交河.”詩中隱含著一個有趣的數(shù)學(xué)問題--將軍飲馬問題:
如圖1所示,詩中將軍在觀望烽火之后從山腳下的A點(diǎn)出發(fā),走到河旁邊的P點(diǎn)飲馬后再到B點(diǎn)宿營.請問怎樣走才能使總的路程最短?
作法如下:如(1)圖,從B出發(fā)向河岸引垂線,垂足為D,在AP的延長線上,取B關(guān)于河岸的對稱點(diǎn)B′,連接AB′,與河岸線相交于P,則P點(diǎn)就是飲馬的地方,將軍只要從A出發(fā),沿直線走到P,飲馬之后,再由P沿直線走到B,所走的路程就是最短的.
(1)觀察發(fā)現(xiàn)
再如(2)圖,在等腰梯形ABCD中,AB=CD=AD=2,∠D=120°,點(diǎn)E、F是底邊AD與BC的中點(diǎn),連接EF,在線段EF上找一點(diǎn)P,使BP+AP最短.
作點(diǎn)B關(guān)于EF的對稱點(diǎn),恰好與點(diǎn)C重合,連接AC交EF于一點(diǎn),則這點(diǎn)就是所求的點(diǎn)P,故BP+AP的最小值為______.

(2)實(shí)踐運(yùn)用
如(3)圖,已知⊙O的直徑MN=1,點(diǎn)A在圓上,且∠AMN的度數(shù)為30°,點(diǎn)B是弧AN的中點(diǎn),點(diǎn)P在直徑MN上運(yùn)動,求BP+AP的最小值.

(3)拓展遷移
如圖,已知拋物線y=ax2+bx+c(a≠0)的對稱軸為x=1,且拋物線經(jīng)過A(-1,0)、C(0,-3)兩點(diǎn),與x軸交于另一點(diǎn)B.
①求這條拋物線所對應(yīng)的函數(shù)關(guān)系式;
②在拋物線的對稱軸直線x=1上找到一點(diǎn)M,使△ACM周長最小,請求出此時點(diǎn)M的坐標(biāo)與△ACM周長最小值.(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:專項(xiàng)題 題型:解答題

如圖,正方形ABCD中,AB=,點(diǎn)E、F分別在BC、CD上,且∠BAE=30°,∠DAF=15度.
(1)求證:DF+BE=EF;
(2)則∠EFC的度數(shù)為_______;
(3)則△AEF的面積為_______。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

未成年人思想道德建設(shè)越來越受到社會的關(guān)注.某青少年研究所隨機(jī)調(diào)查了某校100名學(xué)生寒假中零花錢的數(shù)量(錢數(shù)取整數(shù)元),以便引導(dǎo)學(xué)生樹立正確的消費(fèi)觀.根據(jù)調(diào)查數(shù)據(jù)形成了頻數(shù)分布表和頻數(shù)分布直方圖.如下表和圖所示:
請結(jié)合圖形完成下列問題:
(1)補(bǔ)全頻數(shù)分布表;
(2)在頻數(shù)分布直方圖中,如果將矩形ABCD底邊AB長度視為1,則這個矩形的面積是______;這次調(diào)查的樣本容量是______.
分組頻數(shù) 頻率
0.5~50.5 0.1
50.5~② 200.2
100.5~150.5 0.25
150.5~200.5 30 0.3
200.5~250.5 10 0.1
250.5~300.5 50.05
合計(jì) 100

查看答案和解析>>


同步練習(xí)冊答案