已知f(x)是區(qū)間(-∞,+∞)上的奇函數(shù),f(1)=-2,f(3)=1,則( 。
A.f(3)>f(-1)B.f(3)<f(-1)
C.f(3)=f(-1)D.f(3)與f(-1)無法比較
B
請(qǐng)?jiān)谶@里輸入關(guān)鍵詞:
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是區(qū)間(-∞,+∞)上的奇函數(shù),f(1)=-2,f(3)=1,則( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知f(x)是區(qū)間(-∞,+∞)上的奇函數(shù),f(1)=-2,f(3)=1,則( 。
A.f(3)>f(-1)B.f(3)<f(-1)
C.f(3)=f(-1)D.f(3)與f(-1)無法比較

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

已知f(x)是區(qū)間(-∞,+∞)上的奇函數(shù),f(1)=-2,f(3)=1,則


  1. A.
    f(3)>f(-1)
  2. B.
    f(3)<f(-1)
  3. C.
    f(3)=f(-1)
  4. D.
    f(3)與f(-1)無法比較

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在實(shí)數(shù)集R上的奇函數(shù),且當(dāng)x>0時(shí),f(x)=x2-4x+3,
(Ⅰ)求f[f(-1)]的值;  
(Ⅱ)求函數(shù)f(x)的解析式;  
(Ⅲ)求函數(shù)f(x)在區(qū)間[t,t+1](t>0)上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在R上的奇函數(shù),滿足f(-
3
2
+x)=f(
3
2
+x)
.當(dāng)x∈(0,
3
2
)
時(shí),f(x)=ln(x2-x+1),則函數(shù)f(x)在區(qū)間[0,6]上的零點(diǎn)個(gè)數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在R上的奇函數(shù).當(dāng)x>0時(shí),f(x)=x2-4x,則不等式f(x)≥x的解集用區(qū)間表示為
[-5,0]∪[5,+∞)
[-5,0]∪[5,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在R上的奇函數(shù),且當(dāng)x>0時(shí),f(x)=2x-1.
(1)求f(x)的解析式
(2)寫出f(x)的單調(diào)區(qū)間;
(3)求滿足f(-m)=f(m)的實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=ax-1.其中a>0且a≠1.
(1)求f(2012)+f(-2012)的值;
(2)求f(x)的解析式;
(3)當(dāng)a=2時(shí),解關(guān)于x的不等式-1<f(x-1)<4,結(jié)果用集合或區(qū)間表示.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在區(qū)間[-1,1]上的奇函數(shù),且f(1)=1,若m,n∈[-1,1],m≠n時(shí),有
f(m)-f(n)
m-n
>0

(1)若滿足f(x+
1
2
)+f(x-1)<0,求x的取值范圍
(2)若f(x)≤t2-2at+1對(duì)任意的x∈[-1,1],a∈[-1,1]恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=x2-2x+m.
(1)求m及f(-3)的值;
(2)求f(x)的解析式并畫出簡(jiǎn)圖;
(3)寫出f(x)的單調(diào)區(qū)間(不用證明).

查看答案和解析>>


同步練習(xí)冊(cè)答案