已知方程x2-bx+a=0有一個(gè)根是-a(a≠0),則下列代數(shù)式的值恒為常數(shù)的是(  )
A.a(chǎn)bB.
a
b
C.a(chǎn)+bD.a(chǎn)-b
C
請?jiān)谶@里輸入關(guān)鍵詞:
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

若一元二次方程ax2+bx+c=0(a≠0)的兩個(gè)實(shí)根為x1、x2,則兩根與方程系數(shù)之間有如下關(guān)系:x1+x2=-
b
a
,x1x2=
c
a
.這一結(jié)論稱為一元二次方程根與系數(shù)關(guān)系,它的應(yīng)用很多,請完成下列各題:
(1)應(yīng)用一:用來檢驗(yàn)解方程是否正確.
檢驗(yàn):先求x1+x2=
-
b
a
-
b
a
,x1x2=
c
a
c
a

再將你解出的兩根相加、相乘,即可判斷解得的根是否正確.(本小題完成填空即可)
(2)應(yīng)用二:用來求一些代數(shù)式的值.
①已知:x1、x2是方程x2-4x+2的兩個(gè)實(shí)數(shù)根,求(x1-1)(x2-1)的值;
②若a、b是方程x2+2x-2013=0的兩個(gè)實(shí)數(shù)根,求代數(shù)式a2+3a+b的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

若一元二次方程ax2+bx+c=0(a≠0)的兩個(gè)實(shí)根為x1、x2,則兩根與方程系數(shù)之間有如下關(guān)系:數(shù)學(xué)公式,數(shù)學(xué)公式.這一結(jié)論稱為一元二次方程根與系數(shù)關(guān)系,它的應(yīng)用很多,請完成下列各題:
(1)應(yīng)用一:用來檢驗(yàn)解方程是否正確.
檢驗(yàn):先求x1+x2=______,x1x2=______.
再將你解出的兩根相加、相乘,即可判斷解得的根是否正確.(本小題完成填空即可)
(2)應(yīng)用二:用來求一些代數(shù)式的值.
①已知:x1、x2是方程x2-4x+2的兩個(gè)實(shí)數(shù)根,求(x1-1)(x2-1)的值;
②若a、b是方程x2+2x-2013=0的兩個(gè)實(shí)數(shù)根,求代數(shù)式a2+3a+b的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

請閱讀下列材料:
問題:已知方程x2+x-1=0,求一個(gè)一元二次方程,使它的根分別是已知方程根的2倍.
解:設(shè)所求方程的根為y,則y=2x所以x=
y
2

把x=
y
2
代入已知方程,得(
y
2
2+
y
2
-1=0
化簡,得y2+2y-4=0
故所求方程為y2+2y-4=0.
這種利用方程根的代換求新方程的方法,我們稱為“換根法”.
請用閱讀村料提供的“換根法”求新方程(要求:把所求方程化為一般形式):
(1)已知方程x2+x-2=0,求一個(gè)一元二次方程,使它的根分別為己知方程根的相反數(shù),則所求方程為:
 

(2)己知關(guān)于x的一元二次方程ax2+bx+c=0有兩個(gè)不等于零的實(shí)數(shù)根,求一個(gè)一元二次方程,使它的根分別是己知方程根的倒數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

請閱讀下列材料:問題:已知方程x2+15x-1=0,求一個(gè)一元二次方程,是它的根分別是已知方程根的2倍.
解:設(shè)所求方程根為y,則y=2x,所以x=
y
2
,把x=
y
2
帶人已知方程,得(
y
2
)2+15
y
2
-1=0
,化簡得y2+30y-4=0.故所求的方程為y2+30y-4=0.這種利用方程根的代換求新方程的方法,我們稱為“換根法”.請用閱讀材料提供的換根法求新方程(要求把方程化為一般形式):
(1)已知方程x2+x-2=0,求一個(gè)一元二次方程.是它的根是已知方程根的相反數(shù),則所求方程為:
y2-y-2=0
y2-y-2=0

(2)已知關(guān)于x的一元二次方程ax2+bx+c=0(a≠0)有兩個(gè)不等于零的實(shí)根,求一個(gè)一元二次方程,使它的根分別是已知方程根的倒數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

請閱讀下列材料:問題:已知方程x2+15x-1=0,求一個(gè)一元二次方程,是它的根分別是已知方程根的2倍.
解:設(shè)所求方程根為y,則y=2x,所以數(shù)學(xué)公式,把數(shù)學(xué)公式帶人已知方程,得數(shù)學(xué)公式,化簡得y2+30y-4=0.故所求的方程為y2+30y-4=0.這種利用方程根的代換求新方程的方法,我們稱為“換根法”.請用閱讀材料提供的換根法求新方程(要求把方程化為一般形式):
(1)已知方程x2+x-2=0,求一個(gè)一元二次方程.是它的根是已知方程根的相反數(shù),則所求方程為:______.
(2)已知關(guān)于x的一元二次方程ax2+bx+c=0(a≠0)有兩個(gè)不等于零的實(shí)根,求一個(gè)一元二次方程,使它的根分別是已知方程根的倒數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年福建省龍巖市長汀縣新橋二中九年級(上)第一次月考數(shù)學(xué)試卷(解析版) 題型:解答題

請閱讀下列材料:
問題:已知方程x2+x-1=0,求一個(gè)一元二次方程,使它的根分別是已知方程根的2倍.
解:設(shè)所求方程的根為y,則y=2x所以x=
把x=代入已知方程,得(2+-1=0
化簡,得y2+2y-4=0
故所求方程為y2+2y-4=0.
這種利用方程根的代換求新方程的方法,我們稱為“換根法”.
請用閱讀村料提供的“換根法”求新方程(要求:把所求方程化為一般形式):
(1)已知方程x2+x-2=0,求一個(gè)一元二次方程,使它的根分別為己知方程根的相反數(shù),則所求方程為:______;
(2)己知關(guān)于x的一元二次方程ax2+bx+c=0有兩個(gè)不等于零的實(shí)數(shù)根,求一個(gè)一元二次方程,使它的根分別是己知方程根的倒數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年廣東省湛江市中考數(shù)學(xué)模擬試卷(七)(解析版) 題型:解答題

請閱讀下列材料:
問題:已知方程x2+x-1=0,求一個(gè)一元二次方程,使它的根分別是已知方程根的2倍.
解:設(shè)所求方程的根為y,則y=2x所以x=
把x=代入已知方程,得(2+-1=0
化簡,得y2+2y-4=0
故所求方程為y2+2y-4=0.
這種利用方程根的代換求新方程的方法,我們稱為“換根法”.
請用閱讀村料提供的“換根法”求新方程(要求:把所求方程化為一般形式):
(1)已知方程x2+x-2=0,求一個(gè)一元二次方程,使它的根分別為己知方程根的相反數(shù),則所求方程為:______;
(2)己知關(guān)于x的一元二次方程ax2+bx+c=0有兩個(gè)不等于零的實(shí)數(shù)根,求一個(gè)一元二次方程,使它的根分別是己知方程根的倒數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年貴州省黔西南州中考數(shù)學(xué)試卷(解析版) 題型:解答題

請閱讀下列材料:
問題:已知方程x2+x-1=0,求一個(gè)一元二次方程,使它的根分別是已知方程根的2倍.
解:設(shè)所求方程的根為y,則y=2x所以x=
把x=代入已知方程,得(2+-1=0
化簡,得y2+2y-4=0
故所求方程為y2+2y-4=0.
這種利用方程根的代換求新方程的方法,我們稱為“換根法”.
請用閱讀村料提供的“換根法”求新方程(要求:把所求方程化為一般形式):
(1)已知方程x2+x-2=0,求一個(gè)一元二次方程,使它的根分別為己知方程根的相反數(shù),則所求方程為:______;
(2)己知關(guān)于x的一元二次方程ax2+bx+c=0有兩個(gè)不等于零的實(shí)數(shù)根,求一個(gè)一元二次方程,使它的根分別是己知方程根的倒數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年湖北省十堰市中考數(shù)學(xué)試卷(解析版) 題型:解答題

請閱讀下列材料:
問題:已知方程x2+x-1=0,求一個(gè)一元二次方程,使它的根分別是已知方程根的2倍.
解:設(shè)所求方程的根為y,則y=2x所以x=
把x=代入已知方程,得(2+-1=0
化簡,得y2+2y-4=0
故所求方程為y2+2y-4=0.
這種利用方程根的代換求新方程的方法,我們稱為“換根法”.
請用閱讀村料提供的“換根法”求新方程(要求:把所求方程化為一般形式):
(1)已知方程x2+x-2=0,求一個(gè)一元二次方程,使它的根分別為己知方程根的相反數(shù),則所求方程為:______;
(2)己知關(guān)于x的一元二次方程ax2+bx+c=0有兩個(gè)不等于零的實(shí)數(shù)根,求一個(gè)一元二次方程,使它的根分別是己知方程根的倒數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

若關(guān)于x的一元二次方程ax2+bx+c=0(a≠0)的兩個(gè)實(shí)數(shù)根分別為x1,x2,則數(shù)學(xué)公式數(shù)學(xué)公式
解決下列問題:
已知:a,b,c均為非零實(shí)數(shù),且a>b>c,關(guān)于x的一元二次方程ax2+bx+c=0有兩個(gè)實(shí)數(shù)根,其中一根為2.
(1)填空:4a+2b+c______0,a______0,c______0;(填“>”,“<”或“=”)
(2)利用閱讀材料中的結(jié)論直接寫出方程ax2+bx+c=0的另一個(gè)實(shí)數(shù)根(用含a,c的代數(shù)式表示);
(3)若實(shí)數(shù)m使代數(shù)式am2+bm+c的值小于0,問:當(dāng)x=m+5時(shí),代數(shù)式ax2+bx+c的值是否為正數(shù)?寫出你的結(jié)論并說明理由.

查看答案和解析>>


同步練習(xí)冊答案