曲線f(x)=
1
2
x2
在點(1,
1
2
)
處的切線方程為( 。
A.2x+2y+1=0B.2x+2y-1=0C.2x-2y-1=0D.2x-2y-3=0
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:肇慶二模 題型:單選題

曲線f(x)=
1
2
x2
在點(1,
1
2
)
處的切線方程為( 。
A.2x+2y+1=0B.2x+2y-1=0C.2x-2y-1=0D.2x-2y-3=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•肇慶二模)曲線f(x)=
1
2
x2
在點(1,
1
2
)
處的切線方程為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:房山區(qū)一模 題型:解答題

已知函數(shù)f(x)=
1
2
x2-alnx-
1
2
(a∈R,a≠0)

(Ⅰ)當(dāng)a=2時,求曲線y=f(x)在點(1,f(1))處的切線方程;
(Ⅱ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅲ)若對任意的x∈[1,+∞),都有f(x)≥0成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•南通一模)曲線f(x)=
f′(1)
e
ex-f(0)x+
1
2
x2
在點(1,f(1))處的切線方程為
y=ex-
1
2
y=ex-
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•房山區(qū)一模)已知函數(shù)f(x)=
1
2
x2-alnx-
1
2
(a∈R,a≠0)

(Ⅰ)當(dāng)a=2時,求曲線y=f(x)在點(1,f(1))處的切線方程;
(Ⅱ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅲ)若對任意的x∈[1,+∞),都有f(x)≥0成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
2
x2-alnx-
1
2
(a∈R,a≠0).
(1)當(dāng)a=2時,求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)求函數(shù)f(x)的單調(diào)區(qū)間;
(3)對定義域內(nèi)每一個x,總有f(x)≥0,則稱f(x)為“非負函數(shù)”,若f(x)在x∈[1,+∞)上是“非負函數(shù)”,求實數(shù)a的取值范圍.

查看答案和解析>>


同步練習(xí)冊答案