平面內(nèi)動點P到定點F1(-3,0),F(xiàn)2(3,0)的距離之和為6,則動點P的軌跡是( 。
A.雙曲線B.橢圓C.線段D.不存在
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

平面內(nèi)動點P到定點F1(-3,0),F(xiàn)2(3,0)的距離之和為6,則動點P的軌跡是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

平面內(nèi)動點P到定點F1(-3,0),F(xiàn)2(3,0)的距離之和為6,則動點P的軌跡是( 。
A.雙曲線B.橢圓C.線段D.不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年四川省成都市高二(上)期末數(shù)學(xué)模擬試卷(4)(解析版) 題型:選擇題

平面內(nèi)動點P到定點F1(-3,0),F(xiàn)2(3,0)的距離之和為6,則動點P的軌跡是( )
A.雙曲線
B.橢圓
C.線段
D.不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

平面內(nèi)動點P到定點F1(-3,0),F(xiàn)2(3,0)的距離之和為6,則動點P的軌跡是


  1. A.
    雙曲線
  2. B.
    橢圓
  3. C.
    線段
  4. D.
    不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:四川省期末題 題型:單選題

平面內(nèi)動點P到定點F1(﹣3,0),F(xiàn)2(3,0)的距離之和為6,則動點P的軌跡是
[     ]
A.雙曲線
B.橢圓
C.線段
D.不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年上海市奉賢區(qū)高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

平面內(nèi)一動點P(x,y)到兩定點F1(-1,0),F(xiàn)2(1,0)的距離之積等于1.
(1)求動點P(x,y)的軌跡C方程,用y2=f(x)形式表示;
(2)類似高二第二學(xué)期教材(12.4橢圓的性質(zhì)、12.6雙曲線的性質(zhì)、12.8拋物線的性質(zhì))中研究曲線的方法請你研究軌跡C的性質(zhì),請直接寫出答案;
(3)求△PF1F2周長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•奉賢區(qū)二模)平面內(nèi)一動點P(x,y)到兩定點F1(-1,0),F(xiàn)2(1,0)的距離之積等于1.
(1)求動點P(x,y)的軌跡C方程,用y2=f(x)形式表示;
(2)類似高二第二學(xué)期教材(12.4橢圓的性質(zhì)、12.6雙曲線的性質(zhì)、12.8拋物線的性質(zhì))中研究曲線的方法請你研究軌跡C的性質(zhì),請直接寫出答案;
(3)求△PF1F2周長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出以下命題:
(1)α,β表示平面,a,b,c表示直線,點M;若a?α,b?β,α∩β=c,a∩b=M,則M∈c;
(2)平面內(nèi)有兩個定點F1(0,3),F(xiàn)2(0-3)和一動點M,若||MF1|-|MF2||=2a(a>0)是定值,則點M的軌跡是雙曲線;
(3)在復(fù)數(shù)范圍內(nèi)分解因式:x2-3x+5=(x-
3+
11
i
2
)(x-
3-
11
i
2
)

(4)拋物線y2=12x上有一點P到其焦點的距離為6,則其坐標(biāo)為P(3,±6).
以上命題中所有正確的命題序號為
(1)(3)(4)
(1)(3)(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

給出以下命題:
(1)α,β表示平面,a,b,c表示直線,點M;若a?α,b?β,α∩β=c,a∩b=M,則M∈c;
(2)平面內(nèi)有兩個定點F1(0,3),F(xiàn)2(0-3)和一動點M,若||MF1|-|MF2||=2a(a>0)是定值,則點M的軌跡是雙曲線;
(3)在復(fù)數(shù)范圍內(nèi)分解因式:x2-3x+5=(x-
3+
11
i
2
)(x-
3-
11
i
2
)
;
(4)拋物線y2=12x上有一點P到其焦點的距離為6,則其坐標(biāo)為P(3,±6).
以上命題中所有正確的命題序號為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出以下5個命題:
①曲線x2-(y-1)2=1按
a
=(1,-2)
平移可得曲線(x+1)2-(y-3)2=1;
②設(shè)A、B為兩個定點,n為常數(shù),|
PA
|-|
PB
|=n
,則動點P的軌跡為雙曲線;
③若橢圓的左、右焦點分別為F1、F2,P是該橢圓上的任意一點,延長F1P到點M,使|F2P|=|PM|,則點M的軌跡是圓;
④A、B是平面內(nèi)兩定點,平面內(nèi)一動點P滿足向量
AB
AP
夾角為銳角θ,且滿足 |
PB
| |
AB
| +
PA
AB
=0
,則點P的軌跡是圓(除去與直線AB的交點);
⑤已知正四面體A-BCD,動點P在△ABC內(nèi),且點P到平面BCD的距離與點P到點A的距離相等,則動點P的軌跡為橢圓的一部分.
其中所有真命題的序號為
 

查看答案和解析>>


同步練習(xí)冊答案