已知函數(shù)f(x)=x2+2x+alnx,若函數(shù)f(x)在(0,1)上單調(diào),則實(shí)數(shù)a的取值范圍是( 。
A.a(chǎn)≥0B.a(chǎn)<-4C.a(chǎn)≥0或a≤-4D.a(chǎn)>0或a<-4
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+2x+alnx,若函數(shù)f(x)在(0,1)上單調(diào)遞增,則實(shí)數(shù)a的取值范圍是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+2x+alnx,若函數(shù)f(x)在(0,1)上單調(diào),則實(shí)數(shù)a的取值范圍是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)f(x)=x2+2x+alnx,若函數(shù)f(x)在(0,1)上單調(diào),則實(shí)數(shù)a的取值范圍是( 。
A.a(chǎn)≥0B.a(chǎn)<-4C.a(chǎn)≥0或a≤-4D.a(chǎn)>0或a<-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年福建省泉州市安溪一中、惠安一中、養(yǎng)正中學(xué)聯(lián)考高二(下)期末數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

已知函數(shù)f(x)=x2+2x+alnx,若函數(shù)f(x)在(0,1)上單調(diào)遞增,則實(shí)數(shù)a的取值范圍是( )
A.a(chǎn)<-4
B.a(chǎn)≥0
C.a(chǎn)≤-4
D.a(chǎn)>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江西省南昌三中高二(下)期中數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

已知函數(shù)f(x)=x2+2x+alnx,若函數(shù)f(x)在(0,1)上單調(diào),則實(shí)數(shù)a的取值范圍是( )
A.a(chǎn)≥0
B.a(chǎn)<-4
C.a(chǎn)≥0或a≤-4
D.a(chǎn)>0或a<-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+2x+alnx.
(Ⅰ)若a=-4,求函數(shù)f(x)的極值;
(Ⅱ)當(dāng)t≥1時,不等式f(2t-1)≥2f(t)-3恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+2x+alnx.
(1)求函數(shù)f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)若函數(shù)f(x)在區(qū)間(0,2]上恒為單調(diào)函數(shù),求實(shí)數(shù)a的取值范圍;
(3)當(dāng)t≥1時,不等式f(3t-2)≥3f(t)-6恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+2x+alnx.
(1)若函數(shù)f(x)在區(qū)間(0,1)上是單調(diào)函數(shù),求實(shí)數(shù)a的取值范圍;
(2)當(dāng)t≥1時,不等式f(2t-1)≥2f(t)-3恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+2x+alnx(a∈R).
(1)當(dāng)時a=-4時,求f(x)的最小值;
(2)若函數(shù)f(x)在區(qū)間(0,1)上為單調(diào)函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+
2
x
+alnx(x>0),
(Ⅰ)若函數(shù)y=f(x)的圖象在x=1處的切線l在兩坐標(biāo)軸上的截距相等,求a的值;
(Ⅱ)若f(x)在[1,+∞]上單調(diào)遞增,求a的取值范圍;
(Ⅲ)若定義在區(qū)間D上的函數(shù)y=f(x)對于區(qū)間D上的任意兩個值x1,x2總有以下不等式
1
2
[f(x1)+f(x2)≥f(
x1+x2
2
)成立,則稱函數(shù)y=f(x)為區(qū)間D上的“凹函數(shù)”.試證當(dāng)a≤0時,f(x)為“凹函數(shù)”.

查看答案和解析>>


同步練習(xí)冊答案