點A與點B關(guān)于直線y=-1對稱,若點A的坐標(biāo)為(-5,3),則點B的坐標(biāo)為( 。
A.(-5,-5)B.(-5,-3)C.(3,3)D.(3,-3)
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

關(guān)于x的二次函數(shù)y=-x2+(k2-4)x+2k-2以y軸為對稱軸,且與y軸的交點在x軸上方.

(1)求此拋物線的解析式,并在直角坐標(biāo)系中畫出函數(shù)的草圖;

(2)設(shè)A是y軸右側(cè)拋物線上的一個動點,過點A作AB垂直x軸于點B,再過點A作x軸的平行線交拋物線于點D,過D點作DC垂直x軸于點C, 得到矩形ABCD.設(shè)矩形ABCD的周長為l,點A的橫坐標(biāo)為x,試求l關(guān)于x的函數(shù)關(guān)系式;

(3)當(dāng)點A在y軸右側(cè)的拋物線上運動時,矩形ABCD能否成為正方形.若能,請求出此時正方形的周長;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

若直線l:y=x+3交x軸于點A,交y軸于點B.坐標(biāo)原點O關(guān)于直線l的對稱點O′在反比例函數(shù)y=
k
x
的圖象上.
(1)求反比例函數(shù)y=
k
x
的解析式;
(2)將直線l繞點A逆時針旋轉(zhuǎn)角θ(0°<θ<45°),得到直線l′,l′交y軸于點P,過點P作x軸的平行線,與上述反比例函數(shù)y=
k
x
的圖象交于點Q,當(dāng)四邊形APQO′的面積為9-
3
3
2
時,求θ的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在坐標(biāo)平面內(nèi),半徑為R的⊙O與x軸交于點D(1,0)、E(5,0),與y軸的正半軸相切精英家教網(wǎng)于點B.點A、B關(guān)于x軸對稱,點P(a,0)在x的正半軸上運動,作直線AP,作EH⊥AP于H.
(1)求圓心C的坐標(biāo)及半徑R的值;
(2)△POA和△PHE隨點P的運動而變化,若它們?nèi),求a的值;若給定a=6,試判定直線AP與⊙C的位置關(guān)系(要求說明理由).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

若直線l:y=x+3交x軸于點A,交y軸于點B.坐標(biāo)原點O關(guān)于直線l的對稱點O′在反比例函數(shù)y=數(shù)學(xué)公式的圖象上.
(1)求反比例函數(shù)y=數(shù)學(xué)公式的解析式;
(2)將直線l繞點A逆時針旋轉(zhuǎn)角θ(0°<θ<45°),得到直線l′,l′交y軸于點P,過點P作x軸的平行線,與上述反比例函數(shù)y=數(shù)學(xué)公式的圖象交于點Q,當(dāng)四邊形APQO′的面積為9-數(shù)學(xué)公式時,求θ的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年初中畢業(yè)升學(xué)考試(山東濰坊卷)數(shù)學(xué)(帶解析) 題型:解答題

如圖,拋物線關(guān)于直線對稱,與坐標(biāo)軸交于A、B、C三點,且AB=4,點D在拋物線上,直線是一次函數(shù)的圖象,點O是坐標(biāo)原點.

(1)求拋物線的解析式;
(2)若直線平分四邊形OBDC的面積,求k的值.
(3)把拋物線向左平移1個單位,再向下平移2個單位,所得拋物線與直線交于M、N兩點,問在y軸正半軸上是否存在一定點P,使得不論k取何值,直線PM與PN總是關(guān)于y軸對稱?若存在,求出P點坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇省無錫市惠山北片九年級上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

在坐標(biāo)平面內(nèi),半徑為RCx軸交于點D10)、E50),與y軸的正半軸相切于點A。點A、B關(guān)于x軸對稱,點Pa,0)在x的正半軸上運動,作直線BP,作EHBPH。

求圓心C的坐標(biāo)及半徑R的值;

⑵△POBPHE隨點P的運動而變化,若它們?nèi)龋?/span>a的值;

當(dāng)a=6時,試確定直線BPC的位置關(guān)系并說明理由。

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年初中畢業(yè)升學(xué)考試(山東濰坊卷)數(shù)學(xué)(解析版) 題型:解答題

如圖,拋物線關(guān)于直線對稱,與坐標(biāo)軸交于A、B、C三點,且AB=4,點D在拋物線上,直線是一次函數(shù)的圖象,點O是坐標(biāo)原點.

(1)求拋物線的解析式;

(2)若直線平分四邊形OBDC的面積,求k的值.

(3)把拋物線向左平移1個單位,再向下平移2個單位,所得拋物線與直線交于M、N兩點,問在y軸正半軸上是否存在一定點P,使得不論k取何值,直線PM與PN總是關(guān)于y軸對稱?若存在,求出P點坐標(biāo);若不存在,請說明理由.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線關(guān)于直線對稱,與坐標(biāo)軸交于A、B、C三點,且AB=4,點D在拋物線上,直線是一次函數(shù)的圖象,點O是坐標(biāo)原點.

(1)求拋物線的解析式;
(2)若直線平分四邊形OBDC的面積,求k的值.
(3)把拋物線向左平移1個單位,再向下平移2個單位,所得拋物線與直線交于M、N兩點,問在y軸正半軸上是否存在一定點P,使得不論k取何值,直線PM與PN總是關(guān)于y軸對稱?若存在,求出P點坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在坐標(biāo)平面內(nèi),半徑為R的⊙C與x軸交于點D(1,0)、E(5,0),與y軸的正半軸相切于點A。點A、B關(guān)于x軸對稱,點P(a,0)在x的正半軸上運動,作直線BP,作EH⊥BP于H。

⑴求圓心C的坐標(biāo)及半徑R的值;
⑵△POB和△PHE隨點P的運動而變化,若它們?nèi),求a的值;
⑶當(dāng)a=6時,試確定直線BP與⊙C的位置關(guān)系并說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

在坐標(biāo)平面內(nèi),半徑為R的⊙O與x軸交于點D(1,0)、E(5,0),與y軸的正半軸相切于點B.點A、B關(guān)于x軸對稱,點P(a,0)在x的正半軸上運動,作直線AP,作EH⊥AP于H.
(1)求圓心C的坐標(biāo)及半徑R的值;
(2)△POA和△PHE隨點P的運動而變化,若它們?nèi)龋骯的值;若給定a=6,試判定直線AP與⊙C的位置關(guān)系(要求說明理由).

查看答案和解析>>


同步練習(xí)冊答案