數(shù)列{an}是等差數(shù)列,若m+n=r+s(m,n,r,s∈N*),則下列等式恒成立的是(  )
A.a(chǎn)m+an=ar+asB.a(chǎn)m?an=ar?as
C.a(chǎn)m-an=ar-asD.a(chǎn)m?ar=an?as
A
請(qǐng)?jiān)谶@里輸入關(guān)鍵詞:
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}是等差數(shù)列,若m+n=r+s(m,n,r,s∈N*),則下列等式恒成立的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

數(shù)列{an}是等差數(shù)列,若m+n=r+s(m,n,r,s∈N*),則下列等式恒成立的是( 。
A.a(chǎn)m+an=ar+asB.a(chǎn)m•an=ar•as
C.a(chǎn)m-an=ar-asD.a(chǎn)m•ar=an•as

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

數(shù)列{an}是等差數(shù)列,若m+n=r+s(m,n,r,s∈N*),則下列等式恒成立的是


  1. A.
    am+an=ar+as
  2. B.
    am•an=ar•as
  3. C.
    am-an=ar-as
  4. D.
    am•ar=an•as

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在R上的函數(shù)f(x)和數(shù)列{an}滿足下列條件:a1=a≠0,a2≠a1,當(dāng)n∈N*時(shí),an+1=f(an),且存在非零常數(shù)k使f(an+1)-f(an)=k(an+1-an)恒成立.
(1)若數(shù)列{an}是等差數(shù)列,求k的值;
(2)求證:數(shù)列{an}為等比數(shù)列的充要條件是f(x)=kx(k≠1).
(3)已知f(x)=kx(k>1),a=2,且bn=lnan(n∈N*),數(shù)列{bn}的前n項(xiàng)是Sn,對(duì)于給定常數(shù)m,若
S(m+1)nSmn
的值是一個(gè)與n無(wú)關(guān)的量,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)的定義域?yàn)镽,數(shù)列{an}滿足an=f(an-1)(n∈N*且n≥2).
(Ⅰ)若數(shù)列{an}是等差數(shù)列,a1≠a2,且f(an)-f(an-1)=k(an-an-1)(k為非零常數(shù),n∈N*且n≥2),求k的值;
(Ⅱ)若f(x)=kx(k>1),a1=2,bn=lnan(n∈N*),數(shù)列{bn}的前n項(xiàng)和為Sn,對(duì)于給定的正整數(shù)m,如果
S(m+1)nSmn
的值與n無(wú)關(guān),求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

函數(shù)f(x)的定義域?yàn)镽,數(shù)列{an}滿足an=f(an-1)(n∈N*且n≥2).
(Ⅰ)若數(shù)列{an}是等差數(shù)列,a1≠a2,且f(an)-f(an-1)=k(an-an-1)(k為非零常數(shù),n∈N*且n≥2),求k的值;
(Ⅱ)若f(x)=kx(k>1),a1=2,bn=lnan(n∈N*),數(shù)列{bn}的前n項(xiàng)和為Sn,對(duì)于給定的正整數(shù)m,如果
S(m+1)n
Smn
的值與n無(wú)關(guān),求k的值.

查看答案和解析>>


同步練習(xí)冊(cè)答案