如果方程(m-1)x+2=0是一個關(guān)于x的一元一次方程,那么m的取值范圍是( 。
A.m≠0B.m≠1C.m=-1D.m=0
B
請?jiān)谶@里輸入關(guān)鍵詞:
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

如果方程x2+px+q=0的兩個根是x1,x2,那么x1+x2=-p,x1.x2=q,請根據(jù)以上結(jié)論,解決下列問題:
(1)已知關(guān)于x的方程x2+mx+n=0,(n≠0),求出一個一元二次方程,使它的兩個根分別是已知方程兩根的倒數(shù);
(2)已知a、b滿足a2-15a-5=0,b2-15b-5=0,求數(shù)學(xué)公式的值;
(3)已知a、b、c滿足a+b+c=0,abc=16,求正數(shù)c的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:四川省中考真題 題型:解答題

如果方程x2+px+q=0的兩個根是x1,x2,那么x1+x2=-p,x1.x2=q,請根據(jù)以上結(jié)論,解決下列問題:
(1)已知關(guān)于x的方程x2+mx+n=0,(n≠0),求出一個一元二次方程,使它的兩個根分別是已知方程兩根的倒數(shù);
(2)已知a、b滿足a2-15a-5=0,b2-15b-5=0,求;
(3)已知a、b、c滿足a+b+c=0,abc=16,求正數(shù)c的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年四川省內(nèi)江市中考數(shù)學(xué)試卷(解析版) 題型:解答題

如果方程x2+px+q=0的兩個根是x1,x2,那么x1+x2=-p,x1.x2=q,請根據(jù)以上結(jié)論,解決下列問題:
(1)已知關(guān)于x的方程x2+mx+n=0,(n≠0),求出一個一元二次方程,使它的兩個根分別是已知方程兩根的倒數(shù);
(2)已知a、b滿足a2-15a-5=0,b2-15b-5=0,求的值;
(3)已知a、b、c滿足a+b+c=0,abc=16,求正數(shù)c的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如果方程是一個關(guān)于x的一元一次方程,那么m的取值范

圍是  (     )

(A)   (B)    (C) m=--1    (D)  m=0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

是關(guān)于的一元二次方程的兩個根,則方程的兩個根和系數(shù)有如下關(guān)系:. 我們把它們稱為根與系數(shù)關(guān)系定理. 如果設(shè)二次函數(shù)的圖象與x軸的兩個交點(diǎn)為.利用根與系數(shù)關(guān)系定理我們又可以得到A、B兩個交點(diǎn)間的距離為:

請你參考以上定理和結(jié)論,解答下列問題:

設(shè)二次函數(shù)的圖象與x軸的兩個交點(diǎn)為,拋物線的頂點(diǎn)為,顯然為等腰三角形.

(1)當(dāng)為等腰直角三角形時,求

(2)當(dāng)為等邊三角形時,求

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

是關(guān)于的一元二次方程的兩個根,則方程的兩個根和系數(shù)有如下關(guān)系:. 我們把它們稱為根與系數(shù)關(guān)系定理. 如果設(shè)二次函數(shù)的圖象與x軸的兩個交點(diǎn)為.利用根與系數(shù)關(guān)系定理我們又可以得到A、B兩個交點(diǎn)間的距離為:

請你參考以上定理和結(jié)論,解答下列問題:
設(shè)二次函數(shù)的圖象與x軸的兩個交點(diǎn)為,拋物線的頂點(diǎn)為,顯然為等腰三角形.
(1)當(dāng)為等腰直角三角形時,求
(2)當(dāng)為等邊三角形時,求

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012屆廣東省汕頭市濠江區(qū)中考模擬考試數(shù)學(xué)卷(帶解析) 題型:解答題

是關(guān)于的一元二次方程的兩個根,則方程的兩個根和系數(shù)有如下關(guān)系:. 我們把它們稱為根與系數(shù)關(guān)系定理. 如果設(shè)二次函數(shù)的圖象與x軸的兩個交點(diǎn)為.利用根與系數(shù)關(guān)系定理我們又可以得到A、B兩個交點(diǎn)間的距離為:

請你參考以上定理和結(jié)論,解答下列問題:
設(shè)二次函數(shù)的圖象與x軸的兩個交點(diǎn)為,拋物線的頂點(diǎn)為,顯然為等腰三角形.
(1)當(dāng)為等腰直角三角形時,求
(2)當(dāng)為等邊三角形時,求

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省汕頭市濠江區(qū)中考模擬考試數(shù)學(xué)卷(解析版) 題型:解答題

是關(guān)于的一元二次方程的兩個根,則方程的兩個根和系數(shù)有如下關(guān)系:.  我們把它們稱為根與系數(shù)關(guān)系定理. 如果設(shè)二次函數(shù)的圖象與x軸的兩個交點(diǎn)為.利用根與系數(shù)關(guān)系定理我們又可以得到A、B兩個交點(diǎn)間的距離為:

請你參考以上定理和結(jié)論,解答下列問題:

設(shè)二次函數(shù)的圖象與x軸的兩個交點(diǎn)為,拋物線的頂點(diǎn)為,顯然為等腰三角形.

(1)當(dāng)為等腰直角三角形時,求

(2)當(dāng)為等邊三角形時,求

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

是關(guān)于的一元二次方程的兩個根,則方程的兩個根和系數(shù)有如下關(guān)系:.  我們把它們稱為根與系數(shù)關(guān)系定理.

如果設(shè)二次函數(shù)的圖象與x軸的兩個交點(diǎn)為.利用根與系數(shù)關(guān)系定理我們又可以得到A、B兩個交點(diǎn)間的距離為:

請你參考以上定理和結(jié)論,解答下列問題:

設(shè)二次函數(shù)的圖象與x軸的兩個交點(diǎn)為,拋物線的頂點(diǎn)為,顯然為等腰三角形.

(1)當(dāng)為等腰直角三角形時,求

(2)當(dāng)為等邊三角形時,求

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知關(guān)于的一元二次方程,如果,,那么方程的根的情況是   (     )

A. 有兩個不相等的實(shí)數(shù)根  B. 有兩個相等的實(shí)數(shù)根  C.沒有實(shí)數(shù)根  D.必有一個根為0

查看答案和解析>>


同步練習(xí)冊答案