已知:M,N兩點(diǎn)關(guān)于y軸對(duì)稱,且點(diǎn)M在雙曲線y=
1
2x
上,點(diǎn)N在直線y=x+3上,設(shè)點(diǎn)M的坐標(biāo)為(a,b),則二次函數(shù)y=-abx2+(a+b)x( 。
A.有最大值,最大值為-
9
2
B.有最大值,最大值為
9
2
C.有最小值,最小值為
9
2
D.有最小值,最小值為-
9
2
B
請(qǐng)?jiān)谶@里輸入關(guān)鍵詞:
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:拋物線y=ax2+bx+c(a≠0)的頂點(diǎn)M的坐標(biāo)為(1,-2)與y軸交于點(diǎn)C(0,-
3
2
),與x軸交于A、B兩點(diǎn)(A在B的左邊).
(1)求此拋物線的表達(dá)式;
(2)點(diǎn)P是線段OB上一動(dòng)點(diǎn)(不與點(diǎn)B重合),點(diǎn)Q在線段BM上移動(dòng)且∠MPQ=45°,設(shè)線段OP=x,MQ=
2
2
y
1,求y1與x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(3)①在(2)的條件下是否存在點(diǎn)P,使△PQB是PB為底的等腰三角形,若存在試求點(diǎn)Q的坐標(biāo),若不存在說明理由;
②在(1)中拋物線的對(duì)稱軸上是否存在點(diǎn)F,使△BMF是等腰三角形,若存在直接寫出所有滿足條件的點(diǎn)F的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,拋物線y=x2+bx+c(b、c為常數(shù))經(jīng)過原點(diǎn)和E(3,0).
(1)求該拋物線所對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)設(shè)A是該拋物線上位于x軸下方、且在對(duì)稱軸左側(cè)的一個(gè)動(dòng)點(diǎn),過A作x軸的平行線,交拋物線于另一點(diǎn)D,再作AB⊥x軸于B,DC⊥x軸于C.
①當(dāng)BC=1時(shí),求矩形ABCD的周長(zhǎng);
②試問矩形ABCD的周長(zhǎng)是否存在最大值?如果存在,請(qǐng)求出這個(gè)最大值及此時(shí)點(diǎn)A的坐標(biāo);如果不存在,請(qǐng)說明理由;
③當(dāng)B(
12
,0)時(shí),x軸上是否存在兩點(diǎn)P、Q(點(diǎn)P在點(diǎn)Q的左邊),使得四邊形PQDA是菱形?若存在,請(qǐng)求出符合條件的所有點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,過點(diǎn)O且半徑為5的⊙P交x的正半軸于點(diǎn)M(2m,0),交y軸的負(fù)半軸于點(diǎn)D;弧OBM與弧OAM關(guān)于x軸對(duì)稱,其中A、B、C是過點(diǎn)P且垂直于x軸的直線與兩弧及圓的交點(diǎn),以點(diǎn)B為頂點(diǎn)且過點(diǎn)D的拋物線l交⊙P與另一點(diǎn)E.
(1)當(dāng)m=4時(shí),求出拋物線l的函數(shù)關(guān)系式并寫出點(diǎn)E的坐標(biāo);
(2)當(dāng)m取何值時(shí),四邊形BDCE面積最大?最大面積是多少?
(3)是否存在實(shí)數(shù)m,使得四邊形BDCE為菱形?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013屆湖北省黃岡市啟黃中學(xué)九年級(jí)上學(xué)期期末考試數(shù)學(xué)試卷(帶解析) 題型:單選題

已知:M、N兩點(diǎn)關(guān)于y軸對(duì)稱,且點(diǎn)M在雙曲線上,點(diǎn)N在直線上,設(shè)點(diǎn)M的坐標(biāo)為,則二次函數(shù)(      )

A.有最大值,最大值為B.有最大值,最大值為
C.有最小值,最小值為D.有最小值,最小值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年湖北省黃岡市九年級(jí)上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:選擇題

已知:M、N兩點(diǎn)關(guān)于y軸對(duì)稱,且點(diǎn)M在雙曲線上,點(diǎn)N在直線上,設(shè)點(diǎn)M的坐標(biāo)為,則二次函數(shù)(      )

A.有最大值,最大值為                B.有最大值,最大值為

C.有最小值,最小值為                  D.有最小值,最小值為

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:單選題

已知:M、N兩點(diǎn)關(guān)于y軸對(duì)稱,且點(diǎn)M在雙曲線上,點(diǎn)N在直線上,設(shè)點(diǎn)M的坐標(biāo)為,則二次函數(shù)(      )

A.有最大值,最大值為 B.有最大值,最大值為
C.有最小值,最小值為 D.有最小值,最小值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知:如圖,拋物線y=x2+bx+c(b、c為常數(shù))經(jīng)過原點(diǎn)和E(3,0).
(1)求該拋物線所對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)設(shè)A是該拋物線上位于x軸下方、且在對(duì)稱軸左側(cè)的一個(gè)動(dòng)點(diǎn),過A作x軸的平行線,交拋物線于另一點(diǎn)D,再作AB⊥x軸于B,DC⊥x軸于C.
①當(dāng)BC=1時(shí),求矩形ABCD的周長(zhǎng);
②試問矩形ABCD的周長(zhǎng)是否存在最大值?如果存在,請(qǐng)求出這個(gè)最大值及此時(shí)點(diǎn)A的坐標(biāo);如果不存在,請(qǐng)說明理由;
③當(dāng)B(數(shù)學(xué)公式,0)時(shí),x軸上是否存在兩點(diǎn)P、Q(點(diǎn)P在點(diǎn)Q的左邊),使得四邊形PQDA是菱形?若存在,請(qǐng)求出符合條件的所有點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知:如圖,過點(diǎn)O且半徑為5的⊙P交x的正半軸于點(diǎn)M(2m,0),交y軸的負(fù)半軸于點(diǎn)D;弧OBM與弧OAM關(guān)于x軸對(duì)稱,其中A、B、C是過點(diǎn)P且垂直于x軸的直線與兩弧及圓的交點(diǎn),以點(diǎn)B為頂點(diǎn)且過點(diǎn)D的拋物線l交⊙P與另一點(diǎn)E.
(1)當(dāng)m=4時(shí),求出拋物線l的函數(shù)關(guān)系式并寫出點(diǎn)E的坐標(biāo);
(2)當(dāng)m取何值時(shí),四邊形BDCE面積最大?最大面積是多少?
(3)是否存在實(shí)數(shù)m,使得四邊形BDCE為菱形?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知:M、N兩點(diǎn)關(guān)于y軸對(duì)稱,且點(diǎn)M在雙曲線上,點(diǎn)N在直線上,設(shè)點(diǎn)M的坐標(biāo)為,則二次函數(shù)(      )
A.有最大值,最大值為B.有最大值,最大值為
C.有最小值,最小值為D.有最小值,最小值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:中考數(shù)學(xué)專項(xiàng)練習(xí) 題型:044

已知:二次函數(shù)的圖像交x軸于A、B兩點(diǎn),點(diǎn)A在點(diǎn)B的左邊,并且OA=3BO,二次函數(shù)圖像的頂點(diǎn)為C,點(diǎn)D在反比例函數(shù)y=的圖像上,點(diǎn)C和點(diǎn)D關(guān)于x軸對(duì)稱.求當(dāng)點(diǎn)D到x軸的距離為4時(shí)的二次函數(shù)的解析式.

查看答案和解析>>


同步練習(xí)冊(cè)答案