小明、小亮、小梅、小花四人共同探討代數(shù)式x2-6x+10的值的情況.他們作了如下分工:小明負(fù)責(zé)找其值為1時(shí)的x的值,小亮負(fù)責(zé)找其值為0時(shí)的x的值,小梅負(fù)責(zé)找最小值,小花負(fù)責(zé)找最大值,幾分鐘后,各自通報(bào)探究的結(jié)論,其中錯(cuò)誤的是( 。
A.小明認(rèn)為只有當(dāng)x=3時(shí),x2-6x+10的值為1
B.小亮認(rèn)為找不到實(shí)數(shù)x,使x2-6x+10的值為0
C.小梅發(fā)現(xiàn)x2-6x+10的值隨x的變化而變化,因此認(rèn)為沒(méi)有最小值
D.小花發(fā)現(xiàn)當(dāng)x取大于3的實(shí)數(shù)時(shí),x2-6x+10的值隨x的增大而增大,因此認(rèn)為沒(méi)有最大值
C
請(qǐng)?jiān)谶@里輸入關(guān)鍵詞:
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

15、小明、小亮、小梅、小花四人共同探究代數(shù)式x2-4x+5的值的情況.他們作了如下分工:小明負(fù)責(zé)找值為1時(shí)x的值,小亮負(fù)責(zé)找值為0時(shí)x的值,小梅負(fù)責(zé)找最小值,小花負(fù)責(zé)找最大值.幾分鐘后,各自通報(bào)探究的結(jié)論,其中錯(cuò)誤的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

16、小明、小亮、小梅、小花四人共同探究代數(shù)式x2-4x+5的值的情況.他們分工完成后,各自通報(bào)探究的結(jié)論:①小明認(rèn)為只有當(dāng)x=2時(shí),x2-4x+5的值為1;②小亮認(rèn)為找不到實(shí)數(shù)x,使x2-4x+5的值為O;③小梅發(fā)現(xiàn)x2-4x+5的值隨x的變化而變化,因此認(rèn)為沒(méi)有最小值;④小花發(fā)現(xiàn)當(dāng)x取大于2的實(shí)數(shù)時(shí),x2-4x+5的值隨x的增大而增大,因此認(rèn)為沒(méi)有最大值.則其中正確結(jié)論的序號(hào)是
①②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

10、小明、小亮、小梅、小花四人共同探討代數(shù)式x2-6x+10的值的情況.他們作了如下分工:小明負(fù)責(zé)找其值為1時(shí)的x的值,小亮負(fù)責(zé)找其值為0時(shí)的x的值,小梅負(fù)責(zé)找最小值,小花負(fù)責(zé)找最大值,幾分鐘后,各自通報(bào)探究的結(jié)論,其中錯(cuò)誤的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013屆浙江省樂(lè)清市鹽盆一中九年級(jí)第三次模擬考試數(shù)學(xué)試卷(帶解析) 題型:單選題

小明、小亮、小梅、小花四人共同探究代數(shù)式x2-4x+5的值的情況,他們作了如下分工:小明負(fù)責(zé)找值為1時(shí)的x值,小亮負(fù)責(zé)找值為0時(shí)的x值,小梅負(fù)責(zé)找最小值,小花負(fù)責(zé)找最大值。幾分鐘后,各自通報(bào)探究的結(jié)論,其中錯(cuò)誤的是(   )

A.小明認(rèn)為只有當(dāng)x=2時(shí),x2-4x+5的值為1;
B.小亮認(rèn)為找不到實(shí)數(shù)x,使x2-4x+5的值為0;
C.小花發(fā)現(xiàn)當(dāng)取大于2的實(shí)數(shù)時(shí),x2-4x+5的值隨x的增大而增大,因此認(rèn)為沒(méi)有最大值;
D.小梅發(fā)現(xiàn)x2-4x+5的值隨x的變化而變化,因此認(rèn)為沒(méi)有最小值;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年浙江省樂(lè)清市九年級(jí)第三次模擬考試數(shù)學(xué)試卷(解析版) 題型:選擇題

小明、小亮、小梅、小花四人共同探究代數(shù)式x2-4x+5的值的情況,他們作了如下分工:小明負(fù)責(zé)找值為1時(shí)的x值,小亮負(fù)責(zé)找值為0時(shí)的x值,小梅負(fù)責(zé)找最小值,小花負(fù)責(zé)找最大值。幾分鐘后,各自通報(bào)探究的結(jié)論,其中錯(cuò)誤的是(    )

A.小明認(rèn)為只有當(dāng)x=2時(shí),x2-4x+5的值為1;

B.小亮認(rèn)為找不到實(shí)數(shù)x,使x2-4x+5的值為0;

C.小花發(fā)現(xiàn)當(dāng)取大于2的實(shí)數(shù)時(shí),x2-4x+5的值隨x的增大而增大,因此認(rèn)為沒(méi)有最大值;

D.小梅發(fā)現(xiàn)x2-4x+5的值隨x的變化而變化,因此認(rèn)為沒(méi)有最小值;

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

小明、小亮、小梅、小花四人共同探討代數(shù)式x2-6x+10的值的情況.他們作了如下分工:小明負(fù)責(zé)找其值為1時(shí)的x的值,小亮負(fù)責(zé)找其值為0時(shí)的x的值,小梅負(fù)責(zé)找最小值,小花負(fù)責(zé)找最大值,幾分鐘后,各自通報(bào)探究的結(jié)論,其中錯(cuò)誤的是( 。
A.小明認(rèn)為只有當(dāng)x=3時(shí),x2-6x+10的值為1
B.小亮認(rèn)為找不到實(shí)數(shù)x,使x2-6x+10的值為0
C.小梅發(fā)現(xiàn)x2-6x+10的值隨x的變化而變化,因此認(rèn)為沒(méi)有最小值
D.小花發(fā)現(xiàn)當(dāng)x取大于3的實(shí)數(shù)時(shí),x2-6x+10的值隨x的增大而增大,因此認(rèn)為沒(méi)有最大值

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:煙臺(tái) 題型:單選題

小明、小亮、小梅、小花四人共同探究代數(shù)式x2-4x+5的值的情況.他們作了如下分工:小明負(fù)責(zé)找值為1時(shí)x的值,小亮負(fù)責(zé)找值為0時(shí)x的值,小梅負(fù)責(zé)找最小值,小花負(fù)責(zé)找最大值.幾分鐘后,各自通報(bào)探究的結(jié)論,其中錯(cuò)誤的是(  )
A.小明認(rèn)為只有當(dāng)x=2時(shí),x2-4x+5的值為1
B.小亮認(rèn)為找不到實(shí)數(shù)x,使x2-4x+5的值為0
C.小梅發(fā)現(xiàn)x2-4x+5的值隨x的變化而變化,因此認(rèn)為沒(méi)有最小值
D.小花發(fā)現(xiàn)當(dāng)x取大于2的實(shí)數(shù)時(shí),x2-4x+5的值隨x的增大而增大,因此認(rèn)為沒(méi)有最大值

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:第2章《二次函數(shù)》常考題集(14):2.6 何時(shí)獲得最大利潤(rùn)(解析版) 題型:選擇題

小明、小亮、小梅、小花四人共同探究代數(shù)式x2-4x+5的值的情況.他們作了如下分工:小明負(fù)責(zé)找值為1時(shí)x的值,小亮負(fù)責(zé)找值為0時(shí)x的值,小梅負(fù)責(zé)找最小值,小花負(fù)責(zé)找最大值.幾分鐘后,各自通報(bào)探究的結(jié)論,其中錯(cuò)誤的是( )
A.小明認(rèn)為只有當(dāng)x=2時(shí),x2-4x+5的值為1
B.小亮認(rèn)為找不到實(shí)數(shù)x,使x2-4x+5的值為0
C.小梅發(fā)現(xiàn)x2-4x+5的值隨x的變化而變化,因此認(rèn)為沒(méi)有最小值
D.小花發(fā)現(xiàn)當(dāng)x取大于2的實(shí)數(shù)時(shí),x2-4x+5的值隨x的增大而增大,因此認(rèn)為沒(méi)有最大值

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:第2章《二次函數(shù)》中考題集(15):2.6 何時(shí)獲得最大利潤(rùn)(解析版) 題型:選擇題

小明、小亮、小梅、小花四人共同探究代數(shù)式x2-4x+5的值的情況.他們作了如下分工:小明負(fù)責(zé)找值為1時(shí)x的值,小亮負(fù)責(zé)找值為0時(shí)x的值,小梅負(fù)責(zé)找最小值,小花負(fù)責(zé)找最大值.幾分鐘后,各自通報(bào)探究的結(jié)論,其中錯(cuò)誤的是( )
A.小明認(rèn)為只有當(dāng)x=2時(shí),x2-4x+5的值為1
B.小亮認(rèn)為找不到實(shí)數(shù)x,使x2-4x+5的值為0
C.小梅發(fā)現(xiàn)x2-4x+5的值隨x的變化而變化,因此認(rèn)為沒(méi)有最小值
D.小花發(fā)現(xiàn)當(dāng)x取大于2的實(shí)數(shù)時(shí),x2-4x+5的值隨x的增大而增大,因此認(rèn)為沒(méi)有最大值

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:第34章《二次函數(shù)》常考題集(09):34.3 二次函數(shù)的圖象和性質(zhì)(解析版) 題型:選擇題

小明、小亮、小梅、小花四人共同探究代數(shù)式x2-4x+5的值的情況.他們作了如下分工:小明負(fù)責(zé)找值為1時(shí)x的值,小亮負(fù)責(zé)找值為0時(shí)x的值,小梅負(fù)責(zé)找最小值,小花負(fù)責(zé)找最大值.幾分鐘后,各自通報(bào)探究的結(jié)論,其中錯(cuò)誤的是( )
A.小明認(rèn)為只有當(dāng)x=2時(shí),x2-4x+5的值為1
B.小亮認(rèn)為找不到實(shí)數(shù)x,使x2-4x+5的值為0
C.小梅發(fā)現(xiàn)x2-4x+5的值隨x的變化而變化,因此認(rèn)為沒(méi)有最小值
D.小花發(fā)現(xiàn)當(dāng)x取大于2的實(shí)數(shù)時(shí),x2-4x+5的值隨x的增大而增大,因此認(rèn)為沒(méi)有最大值

查看答案和解析>>


同步練習(xí)冊(cè)答案