設(shè)函數(shù)f(x)=(x2-10x+c1)(x2-10x+c2)(x2-10x+c3)(x2-10x+c4)(x2-10x+c5),集合M={x|f(x)=0}={x1,x2,…,x9}?N*,設(shè)c1≥c2≥c3≥c4≥c5,則c1-c5為( 。
A.20B.18C.16D.14
C
請在這里輸入關(guān)鍵詞:
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

10、設(shè)函數(shù)f(x)=(x2-10x+c1)(x2-10x+c2)(x2-10x+c3)(x2-10x+c4)(x2-10x+c5),集合M={x|f(x)=0}={x1,x2,…,x9}⊆N*,設(shè)c1≥c2≥c3≥c4≥c5,則c1-c5為( 。

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年浙江省杭州市蕭山中學高三(上)摸底數(shù)學試卷(文科)(解析版) 題型:選擇題

設(shè)函數(shù)f(x)=(x2-10x+c1)(x2-10x+c2)(x2-10x+c3)(x2-10x+c4)(x2-10x+c5),集合M={x|f(x)=0}={x1,x2,…,x9}⊆N*,設(shè)c1≥c2≥c3≥c4≥c5,則c1-c5為( )
A.20
B.18
C.16
D.14

查看答案和解析>>

科目:高中數(shù)學 來源:2009-2010學年上海市十三校高三(上)第一次聯(lián)考數(shù)學試卷(文科)(解析版) 題型:選擇題

設(shè)函數(shù)f(x)=(x2-10x+c1)(x2-10x+c2)(x2-10x+c3)(x2-10x+c4)(x2-10x+c5),集合M={x|f(x)=0}={x1,x2,…,x9}⊆N*,設(shè)c1≥c2≥c3≥c4≥c5,則c1-c5為( )
A.20
B.18
C.16
D.14

查看答案和解析>>

科目:高中數(shù)學 來源:2009-2010學年上海市十三校高三(上)第一次聯(lián)考數(shù)學試卷(理科)(解析版) 題型:選擇題

設(shè)函數(shù)f(x)=(x2-10x+c1)(x2-10x+c2)(x2-10x+c3)(x2-10x+c4)(x2-10x+c5),集合M={x|f(x)=0}={x1,x2,…,x9}⊆N*,設(shè)c1≥c2≥c3≥c4≥c5,則c1-c5為( )
A.20
B.18
C.16
D.14

查看答案和解析>>

科目:高中數(shù)學 來源:2013年浙江省杭州市重點高中高考命題比賽數(shù)學參賽試卷02(文科)(解析版) 題型:選擇題

設(shè)函數(shù)f(x)=(x2-10x+c1)(x2-10x+c2)(x2-10x+c3)(x2-10x+c4)(x2-10x+c5),集合M={x|f(x)=0}={x1,x2,…,x9}⊆N*,設(shè)c1≥c2≥c3≥c4≥c5,則c1-c5為( )
A.20
B.18
C.16
D.14

查看答案和解析>>

科目:高中數(shù)學 來源:2013年浙江省杭州市重點高中高考命題比賽數(shù)學參賽試卷07(文科)(解析版) 題型:選擇題

設(shè)函數(shù)f(x)=(x2-10x+c1)(x2-10x+c2)(x2-10x+c3)(x2-10x+c4)(x2-10x+c5),集合M={x|f(x)=0}={x1,x2,…,x9}⊆N*,設(shè)c1≥c2≥c3≥c4≥c5,則c1-c5為( )
A.20
B.18
C.16
D.14

查看答案和解析>>

科目:高中數(shù)學 來源:2010年湖北省荊州市高三質(zhì)量檢測數(shù)學試卷(2)(解析版) 題型:選擇題

設(shè)函數(shù)f(x)=(x2-10x+c1)(x2-10x+c2)(x2-10x+c3)(x2-10x+c4)(x2-10x+c5),集合M={x|f(x)=0}={x1,x2,…,x9}⊆N*,設(shè)c1≥c2≥c3≥c4≥c5,則c1-c5為( )
A.20
B.18
C.16
D.14

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設(shè)函數(shù)f(x)=(x2-10x+c1)(x2-10x+c2)(x2-10x+c3)(x2-10x+c4)(x2-10x+c5),集合M={x|f(x)=0}={x1,x2,…,x9}⊆N*,設(shè)c1≥c2≥c3≥c4≥c5,則c1-c5為( 。
A.20B.18C.16D.14

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

設(shè)函數(shù)f(x)=(x2-10x+c1)(x2-10x+c2)(x2-10x+c3)(x2-10x+c4)(x2-10x+c5),集合M={x|f(x)=0}={x1,x2,…,x9}⊆N*,設(shè)c1≥c2≥c3≥c4≥c5,則c1-c5


  1. A.
    20
  2. B.
    18
  3. C.
    16
  4. D.
    14

查看答案和解析>>


同步練習冊答案