已知x=2是函數(shù)f(x)=
x-a
x2
的一個極值點,則f(x)的單調(diào)遞減區(qū)間是(  )
A.(-∞,2)B.(2,+∞)C.(-∞,0)∪(2,+∞)D.(-∞,0)和(2,+∞)
D
請在這里輸入關(guān)鍵詞:
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知x=2是函數(shù)f(x)=
x-a
x2
的一個極值點,則f(x)的單調(diào)遞減區(qū)間是( 。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知x=2是函數(shù)f(x)=
x-a
x2
的一個極值點,則f(x)的單調(diào)遞減區(qū)間是(  )
A.(-∞,2)B.(2,+∞)C.(-∞,0)∪(2,+∞)D.(-∞,0)和(2,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x3-x2+ax+b(a,b∈R)的一個極值點為x=1.方程ax2+x+b=0的兩個實根為α,β(α<β),函數(shù)f(x)在區(qū)間[α,β]上是單調(diào)的.
(1)求a的值和b的取值范圍;
(2)若x1,x2∈[α,β],證明:|f(x1)-f(x2)|≤1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=
2
3
x3-ax2-3x,(a∈R)

(1)當|a|≤
1
2
時,求證:f(x)在(-1,1)內(nèi)是減函數(shù);
(2)若y=f(x)在(-1,1)內(nèi)有且只有一個極值點,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x3-ax2-3x
(1)若f(x)在區(qū)間[1,+∞)上是增函數(shù),求實數(shù)a的取值范圍;
(2)若x=-
13
是f(x)的一個極值點,求f(x)在[1,a]上的最大值;
(3)在(2)的條件下,是否存在實數(shù)b,使得函數(shù)g(x)=bx的圖象與函數(shù)f(x)的圖象恰有3個交點,若存在,請求出實數(shù)b的取值范圍;若不存在,試說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
1
3
x3+ax2+b2x+1
,若a是從1,2,3三個數(shù)中任取的一個數(shù),b是從0,1,2三個數(shù)中任取的一個數(shù),則該函數(shù)有兩個極值點的概率為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=6lnx-ax2-8x+b,其中a,b為常數(shù)且x=3是f(x)的一個極值點.
(1)求a的值;
(2)求函數(shù)f(x)的單調(diào)減區(qū)間;
(3)若y=f(x)的圖象與x軸有且只有3個交點,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x3+ax2+bx+c,x∈[-2,2]表示的曲線過原點,且在x=±1處的切線斜率均為-1,有以下命題:
①f(x)的解析式為:f(x)=x3-4x,x∈[-2,2];、趂(x)的極值點有且僅有一個;  ③f(x)的最大值與最小值之和等于零,則下列選項正確的是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x3+ax2+bx+c,x∈[-2,2]表示的曲線過原點,且在x=±1處的切線斜率均為-1,有以下命題:
①f(x)的解析式為:f(x)=x3-4x,x∈[-2,2]
②f(x)的極值點有且僅有一個;
③f(x)的最大值與最小值之和等于零.
其中正確的命題是
①③
①③

查看答案和解析>>

科目:高中數(shù)學 來源:2007-2008學年山東省淄博七中高三(上)第二次月考數(shù)學試卷(理科)(解析版) 題型:解答題

已知函數(shù)f(x)=6lnx-ax2-8x+b,其中a,b為常數(shù)且x=3是f(x)的一個極值點.
(1)求a的值;
(2)求函數(shù)f(x)的單調(diào)減區(qū)間;
(3)若y=f(x)的圖象與x軸有且只有3個交點,求b的取值范圍.

查看答案和解析>>


同步練習冊答案