等差數(shù)列-3,-1,…,2k-1的項(xiàng)數(shù)是(  )
A.k+3B.k+2C.k+1D.k
B
請?jiān)谶@里輸入關(guān)鍵詞:
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

4、等差數(shù)列-3,-1,…,2k-1的項(xiàng)數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

等差數(shù)列-3,-1,…,2k-1的項(xiàng)數(shù)是( 。
A.k+3B.k+2C.k+1D.k

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年浙江省溫州市部分學(xué)校高一(下)期末數(shù)學(xué)試卷(解析版) 題型:選擇題

等差數(shù)列-3,-1,…,2k-1的項(xiàng)數(shù)是( )
A.k+3
B.k+2
C.k+1
D.k

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

等差數(shù)列-3,-1,…,2k-1的項(xiàng)數(shù)是


  1. A.
    k+3
  2. B.
    k+2
  3. C.
    k+1
  4. D.
    k

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的通項(xiàng)是關(guān)于x的不等式x2-x<(2n-1)x(n∈N′)的解集中整數(shù)的個(gè)數(shù).
(1)求an并且證明{an}是等差數(shù)列;
(2)設(shè)m、k、p∈N*,m+p=2k,求證:
1
Sm
+
1
Sp
2
Sk
;
(3)對于(2)中的命題,對一般的各項(xiàng)均為正數(shù)的等差數(shù)列還成立嗎?如果成立,請證明你的結(jié)論,如果不成立,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)數(shù)列{an}的各項(xiàng)均為正數(shù),前n項(xiàng)和為Sn,已知數(shù)學(xué)公式
(1)證明數(shù)列{an}是等差數(shù)列,并求其通項(xiàng)公式;
(2)是否存在k∈N*,使得數(shù)學(xué)公式,若存在,求出k的值;若不存在請說明理由;
(3)證明:對任意m、k、p∈N*,m+p=2k,都有數(shù)學(xué)公式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)數(shù)列{an}的通項(xiàng)是關(guān)于x的不等式x2-x<(2n-1)x(n∈N′)的解集中整數(shù)的個(gè)數(shù).
(1)求an并且證明{an}是等差數(shù)列;
(2)設(shè)m、k、p∈N*,m+p=2k,求證:
1
Sm
+
1
Sp
2
Sk

(3)對于(2)中的命題,對一般的各項(xiàng)均為正數(shù)的等差數(shù)列還成立嗎?如果成立,請證明你的結(jié)論,如果不成立,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年江蘇省揚(yáng)州市期末數(shù)學(xué)復(fù)習(xí)試卷(一)(解析版) 題型:解答題

設(shè)數(shù)列{an}的通項(xiàng)是關(guān)于x的不等式x2-x<(2n-1)x(n∈N′)的解集中整數(shù)的個(gè)數(shù).
(1)求an并且證明{an}是等差數(shù)列;
(2)設(shè)m、k、p∈N*,m+p=2k,求證:+;
(3)對于(2)中的命題,對一般的各項(xiàng)均為正數(shù)的等差數(shù)列還成立嗎?如果成立,請證明你的結(jié)論,如果不成立,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年江蘇省鹽城中學(xué)高考數(shù)學(xué)三模試卷(解析版) 題型:解答題

設(shè)數(shù)列{an}的通項(xiàng)是關(guān)于x的不等式x2-x<(2n-1)x(n∈N′)的解集中整數(shù)的個(gè)數(shù).
(1)求an并且證明{an}是等差數(shù)列;
(2)設(shè)m、k、p∈N*,m+p=2k,求證:+
(3)對于(2)中的命題,對一般的各項(xiàng)均為正數(shù)的等差數(shù)列還成立嗎?如果成立,請證明你的結(jié)論,如果不成立,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年上海市閔行區(qū)高考數(shù)學(xué)一模試卷(文科)(解析版) 題型:解答題

設(shè)數(shù)列{an}的各項(xiàng)均為正數(shù),前n項(xiàng)和為Sn,已知
(1)證明數(shù)列{an}是等差數(shù)列,并求其通項(xiàng)公式;
(2)是否存在k∈N*,使得,若存在,求出k的值;若不存在請說明理由;
(3)證明:對任意m、k、p∈N*,m+p=2k,都有

查看答案和解析>>


同步練習(xí)冊答案