已知關(guān)于x的方程a(
1
4
)x-(
1
2
)x+2=0
在區(qū)間[-1,0]上有實數(shù)根,則實數(shù)a的取值范圍是( 。
A.[0,
1
8
]
B.[-1,0)∪(0,
1
8
]
C.[-1,
1
8
]
D.[-1,0]
D
請在這里輸入關(guān)鍵詞:
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知關(guān)于x的方程x2+ax+2b=0(a,b∈R)的兩個實數(shù)根分別在區(qū)間(0,1)和(1,2)內(nèi),則|4a+3b-12|的取值范圍是
(16,21)
(16,21)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=log3x
(1)若函數(shù)f(x2-2ax+3)在區(qū)間[2,+∞)上單調(diào)遞增,求正實數(shù)a的取值范圍;
(2)若關(guān)于x的方程f(ax)•f(ax2)=f(3)的解都在區(qū)間(0,1)內(nèi),求實數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知U={1,2,3,4,5},A={2,3,5},B={4,5},C={x|x2-ax-b=0}(a,b為常數(shù))
(Ⅰ)若C=A∩CUB,求出實數(shù)a,b的值;
(Ⅱ)在(Ⅰ)的結(jié)論下,若已知關(guān)于x的實系數(shù)一元二次方程(a-3)x2+(b+5)x+k=0兩實根均在區(qū)間(0,1)內(nèi),試求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題p:“關(guān)于x的方程x2-ax+a=0無實根”和命題q:“函數(shù)f(x)=x2-ax+a在區(qū)間[-1,+∞)上單調(diào).如果命題p∨q是假命題,那么,實數(shù)a的取值范圍是( 。
A、(0,4)B、(-∞,2]∪(0,4)C、(-2,0]∪[4,+∞)D、[-2,0)∪(4,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2-ax-2,g(x)=x2-bx+1(x≥2),

(1)f(x)≤0在區(qū)間[-1,1]上恒成立時,求實數(shù)a的值組成的集合A;

(2)設關(guān)于x的方程f(x)=0的兩個實根為x1,x2,求證:對任意a∈A,b∈A,不等式g(x)≥|x1-x2|恒成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)f(x)=log3x.
(Ⅰ)若關(guān)于x的方程f(ax)•f(ax2)=f(3)的解都在區(qū)間(0,1)內(nèi),求實數(shù)a的范圍;
(Ⅱ)若函數(shù)f(x2-2ax+3)在區(qū)間[2,+∞)上單調(diào)遞增,求正實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知U={1,2,3,4,5},A={2,3,5},B={4,5},C={x|x2-ax-b=0}(a,b為常數(shù))
(Ⅰ)若C=A∩CUB,求出實數(shù)a,b的值;
(Ⅱ)在(Ⅰ)的結(jié)論下,若已知關(guān)于x的實系數(shù)一元二次方程(a-3)x2+(b+5)x+k=0兩實根均在區(qū)間(0,1)內(nèi),試求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知U={1,2,3,4,5},A={2,3,5},B={4,5},C={x|x2-ax-b=0}(a,b為常數(shù))
(Ⅰ)若C=A∩CUB,求出實數(shù)a,b的值;
(Ⅱ)在(Ⅰ)的結(jié)論下,若已知關(guān)于x的實系數(shù)一元二次方程(a-3)x2+(b+5)x+k=0兩實根均在區(qū)間(0,1)內(nèi),試求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知命題p:“關(guān)于x的方程x2-ax+a=0無實根”和命題q:“函數(shù)f(x)=x2-ax+a在區(qū)間[-1,+∞)上單調(diào).如果命題p∨q是假命題,那么,實數(shù)a的取值范圍是( 。
A.(0,4)B.(-∞,2]∪(0,4)C.(-2,0]∪[4,+∞)D.[-2,0)∪(4,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)f(x)=log3x
(1)若函數(shù)f(x2-2ax+3)在區(qū)間[2,+∞)上單調(diào)遞增,求正實數(shù)a的取值范圍;
(2)若關(guān)于x的方程f(ax)•f(ax2)=f(3)的解都在區(qū)間(0,1)內(nèi),求實數(shù)a的范圍.

查看答案和解析>>


同步練習冊答案