函數(shù)f(x)=(x+a)?lnx在x=e處的切線與直線x+2y-5=0垂直,則a的值為( 。 |
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:石家莊二模
題型:單選題
函數(shù)f(x)=(x+a)•lnx在x=e處的切線與直線x+2y-5=0垂直,則a的值為( 。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:2010年河北省石家莊市高考數(shù)學(xué)二模試卷(理科)(解析版)
題型:選擇題
函數(shù)f(x)=(x+a)•lnx在x=e處的切線與直線x+2y-5=0垂直,則a的值為( )
A.0
B.1
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
(2010•石家莊二模)函數(shù)f(x)=(x+a)•lnx在x=e處的切線與直線x+2y-5=0垂直,則a的值為( 。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知函數(shù)f(x)=(mx+n)lnx的圖象過點A(e,e)且在A處的切線斜率為2,g(x)=
x
2+
ax
2+6x+2.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)對任意的x∈(0,+∞),f(x)≤g′(x)恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
設(shè)函數(shù) f (x)=ax-lnx-3(a∈R),g(x)=xe1-x.
(Ⅰ)若函數(shù)g(x)的圖象在點(0,0)處的切線也恰為f(x)圖象的一條切線,求實數(shù)a的值;
(Ⅱ)是否存在實數(shù)a,對任意的x∈(0,e],都有唯一的x0∈[e-4,e],使得f(x0)=g(x)成立.若存在,求出a的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:2011-2012學(xué)年江西省吉安市新干二中高三(下)第一次夜模數(shù)學(xué)試卷(理科)(解析版)
題型:解答題
已知函數(shù)f(x)=
(m,n∈R)在x=1處取到極值2.
(1)求f(x)的解析式;
(2)設(shè)函數(shù)g(x)=ax-lnx.若對任意的x
1∈[
,2],總存在唯一的x
2∈[
,e](e為自然對數(shù)的底),使得g(x
2)=f(x
1),求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:解答題
設(shè)函數(shù) f (x)=ax-lnx-3(a∈R),g(x)=xe1-x.
(Ⅰ)若函數(shù)g(x)的圖象在點(0,0)處的切線也恰為f(x)圖象的一條切線,求實數(shù)a的值;
(Ⅱ)是否存在實數(shù)a,對任意的x∈(0,e],都有唯一的x0∈[e-4,e],使得f(x0)=g(x)成立.若存在,求出a的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:解答題
已知函數(shù)f(x)=(mx+n)lnx的圖象過點A(e,e)且在A處的切線斜率為2,g(x)=x2+ax2+6x+2.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)對任意的x∈(0,+∞),f(x)≤g′(x)恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知函數(shù)f(x)=(mx+n)lnx的圖象過點A(e,e)且在A處的切線斜率為2,g(x)=
x
2+
ax
2+6x+2.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)對任意的x∈(0,+∞),f(x)≤g′(x)恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:2012-2013學(xué)年浙江省嘉興一中高三(上)10月月考數(shù)學(xué)試卷(文科)(解析版)
題型:解答題
設(shè)函數(shù) f (x)=ax-lnx-3(a∈R),g(x)=xe1-x.
(Ⅰ)若函數(shù)g(x)的圖象在點(0,0)處的切線也恰為f(x)圖象的一條切線,求實數(shù)a的值;
(Ⅱ)是否存在實數(shù)a,對任意的x∈(0,e],都有唯一的x∈[e-4,e],使得f(x)=g(x)成立.若存在,求出a的取值范圍;若不存在,請說明理由.
查看答案和解析>>