如圖,三解形ABC中,∠B=50°,∠C=40°,∠1=∠2.∠3=∠4,∠5是
135
135
度.
分析:先由已知可求∠2和∠4的度數(shù),再根據(jù)三角形的內(nèi)角和定理即可求解.
解答:解:∠2=∠B÷2=50°÷2=25°,
∠4=∠C÷2=40°÷2=20°,
∠5=180°-25°-20°=135°.
故答案為:135.
點(diǎn)評:考查了三角形的內(nèi)角和定理:三角形的內(nèi)角和等于180°;本題得到∠2和∠4的度數(shù)是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:小學(xué)數(shù)學(xué) 來源: 題型:

(2009?和平區(qū))如圖是5×5的正方形網(wǎng)格圖,設(shè)每個(gè)小方格的面積是1.A、B兩點(diǎn)均在網(wǎng)格圖中的交叉點(diǎn)上,A點(diǎn)的位置可用(2,3)表示,B點(diǎn)的位置可用(4,4)表示.現(xiàn)在要在網(wǎng)格圖中的交叉點(diǎn)上找到C點(diǎn),分別連接AB、BC、CA,使三角形ABC的面積為2.滿足以上條件的C點(diǎn)在圖上的不同位置分別用C1、C2、C3┅┅表示.如圖所示,當(dāng)C1的位置在(2,5)時(shí),三解形ABC1的面積就是2.照樣子,分別用C2、C3┅┅在右面網(wǎng)格圖上以數(shù)對形式表示C點(diǎn)的其它所有可能位置.

查看答案和解析>>

科目:小學(xué)數(shù)學(xué) 來源: 題型:解答題

如圖是5×5的正方形網(wǎng)格圖,設(shè)每個(gè)小方格的面積是1.A、B兩點(diǎn)均在網(wǎng)格圖中的交叉點(diǎn)上,A點(diǎn)的位置可用(2,3)表示,B點(diǎn)的位置可用(4,4)表示.現(xiàn)在要在網(wǎng)格圖中的交叉點(diǎn)上找到C點(diǎn),分別連接AB、BC、CA,使三角形ABC的面積為2.滿足以上條件的C點(diǎn)在圖上的不同位置分別用C1、C2、C3┅┅表示.如圖所示,當(dāng)C1的位置在(2,5)時(shí),三解形ABC1的面積就是2.照樣子,分別用C2、C3┅┅在右面網(wǎng)格圖上以數(shù)對形式表示C點(diǎn)的其它所有可能位置.

查看答案和解析>>

同步練習(xí)冊答案