一輛客車和一輛面包車分別從甲、乙兩地出發(fā)相向而行,客車每小時(shí)行駛32千米,面包車每小時(shí)行駛40千米,兩車分別到達(dá)乙地和甲地后,立即返回出發(fā)點(diǎn),返回時(shí)的速度,客車每小時(shí)增加8千米,面包車每小時(shí)減少5千米,若兩車兩次相遇地點(diǎn)相距70千米,問(wèn)甲、乙兩地相距多少千米?
分析:設(shè)甲乙兩地相距x千米,兩車第一次相遇時(shí)間為t1,則:32t1+40t1=x;
第二次相遇時(shí)間為t2(t2為客車從乙地開(kāi)出的時(shí)間),此時(shí)面包車行駛距離甲地為(
x
32
-
x
40
)×35,第一次相遇時(shí)為A點(diǎn),距乙地40t1,第二次相遇距為B點(diǎn),距乙地40t2,所以兩次距離的差就是70千米,即40t1-40t2=70;再由第二次相遇客車和貨車的路程和是總路程,即(
x
32
-
x
40
)×35+35t2+40t2=x根據(jù)以上三個(gè)方程得出兩次用的時(shí)間之間的關(guān)系,進(jìn)而可以求出第一次相遇用的時(shí)間,進(jìn)而得出總路程.
解答:解:設(shè)甲乙兩地相距x千米,兩車第一次相遇時(shí)間為t1,則:
32t1+40t1=x①,
第二次相遇時(shí)間為t2(t2為客車從乙地開(kāi)出的時(shí)間),此時(shí)面包車行駛距離甲地為:
x
32
-
x
40
)×35,
第一次相遇時(shí)為A點(diǎn),距乙地40t1,第二次相遇距為B點(diǎn),乙地40t2,所以:
40t1-40t2=70②,
x
32
-
x
40
)×35+35t2+40t2=x③,
把以上三個(gè)方程化簡(jiǎn)得出:
t2=
3
4
t1④,
④帶入②可得:
所以t1=7小時(shí),再帶入①可得:
32×7+40×7,
=224+280,
=504(千米);
答:甲、乙兩地相距504千米.
點(diǎn)評(píng):本題根據(jù)總路程=客車速度×相遇時(shí)間+貨車速度×相遇時(shí)間這一關(guān)系,抓住兩次相遇的距離是70千米這一條件,得出方程進(jìn)行化簡(jiǎn)求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:小學(xué)數(shù)學(xué) 來(lái)源: 題型:

光明小學(xué)408名學(xué)生要乘車外出參觀.
租車情況:宇通客車      可乘48人/輛         租金400元/輛
中型面包車    可乘24人/輛         租金220元/輛
(1)如果都租宇通客車,要租
9
9
輛,需要
3600
3600
錢(qián);
(2)如果都租中型面包車,要租
17
17
輛,需要
3740
3740
錢(qián);
(3)租
B
B
最合算.
A.8輛宇通客車    B.8輛宇通客車和一輛中型面包車         C.8輛宇通客車.

查看答案和解析>>

科目:小學(xué)數(shù)學(xué) 來(lái)源: 題型:

一輛面包車和一輛客車同時(shí)從甲城往乙城方向行駛,面包車每小時(shí)比客車多行6千米,比客車早40分鐘到乙城.當(dāng)客車到乙城時(shí),面包車又往前行了30千米,甲城和乙城相距
195
195
千米.

查看答案和解析>>

科目:小學(xué)數(shù)學(xué) 來(lái)源: 題型:解答題

一輛客車和一輛面包車分別從甲、乙兩地出發(fā)相向而行,客車每小時(shí)行駛32千米,面包車每小時(shí)行駛40千米,兩車分別到達(dá)乙地和甲地后,立即返回出發(fā)點(diǎn),返回時(shí)的速度,客車每小時(shí)增加8千米,面包車每小時(shí)減少5千米,若兩車兩次相遇地點(diǎn)相距70千米,問(wèn)甲、乙兩地相距多少千米?

查看答案和解析>>

科目:小學(xué)數(shù)學(xué) 來(lái)源:專項(xiàng)題 題型:填空題

王芳和她的好朋友小紅在十字路口統(tǒng)計(jì)了30分內(nèi)各種車輛通過(guò)的數(shù)量,統(tǒng)計(jì)結(jié)果如下圖?磮D回答問(wèn)題:
(1)  每個(gè)表示(  )輛車。    
(2)(  )車最少。
(3) 轎車比面包車多(  )輛。    
(4) 面包車和客車一共有(  )量
(5) 30分后,來(lái)的第一輛車最有可能是(  )車。

查看答案和解析>>

同步練習(xí)冊(cè)答案