精英家教網(wǎng)如圖,在△ABC中,AB=11cm,AC=9cm.首先,在BC邊上,取點H使么∠BHA=90°;然后在BC邊上,在H與C之間取點D,使么BAD=60°;這樣,∠DAC是∠HAD的2倍.請問,這時BH的長度是CH長度的幾倍?
分析:延長CA到E,使得AE=AB,連接BE,作AF⊥BE與F,易知∠BEA=∠EBA=∠ABH=30°+α,則直角三角形AFB和直徑三角形AFE和直角三角形AHB全等,設三角形ABC的面積為1,則三角形ABE的面積為
11
9
,所以三角形AFB的面積等于三角形ABE的面積的一半,等于
11
18
,也就是三角形ABH的面積等于
11
18
,所以三角形ACH的面積等于1-
11
18
=
7
18
,所以三角形ABH的面積與三角形ACH的面積比是:
11
18
7
18
=
11
7
,由此得出這時BH的長度是CH長度的幾倍.
解答:解:延長CA到E,使得AE=AB,連接BE,作AF⊥BE與F,精英家教網(wǎng)
因為∠BHA=90°,∠BAD=60°,
∠DAC是∠HAD的2倍,
所以∠BEA=∠EBA=∠ABH=30°+α,
則直角三角形AFB和直徑三角形AFE和直角三角形AHB全等,
設三角形ABC的面積為1,則三角形ABE的面積為
11
9
,
所以三角形AFB的面積等于三角形ABE的面積的一半,等于
11
18
,
也就是三角形ABH的面積等于
11
18

所以三角形ACH的面積等于1-
11
18
=
7
18
,
所以三角形ABH的面積與三角形ACH的面積比是:
11
18
7
18
=
11
7

所以BH的長度是CH長度的
11
7
倍;
答:BH的長度是CH長度的
11
7
倍.
點評:關(guān)鍵是作出輔助線,利用三角形的高一定時,三角形底的比等于面積的比.
練習冊系列答案
相關(guān)習題

科目:小學數(shù)學 來源: 題型:

如圖,在△ABC中,D為BC邊上任一點,AE=
1
3
AD,EF=
1
3
EB,F(xiàn)G=GC,△EFG的面積為1平方厘米,求△ABC的面積.

查看答案和解析>>

科目:小學數(shù)學 來源: 題型:

如圖,在△ABC中,兩條角平分線CD、EF相交于F,∠A=60°,則∠DFE=
120
120
度.

查看答案和解析>>

科目:小學數(shù)學 來源: 題型:

(2013?北京模擬)如圖,在△ABC中,AD=
1
3
AB,BE=EF=FC,CG=
1
3
CA,求陰影部分面積占△ABC的幾分之幾?

查看答案和解析>>

科目:小學數(shù)學 來源: 題型:

如圖,在△ABC中,E、D、F分別為AD、BC、AB的中點,BD=DE=EC,BF=FA,△EDF的面積是1,那么△ABC的面積是多少?

查看答案和解析>>

科目:小學數(shù)學 來源: 題型:

如圖,在△ABC中,
CD
BD
=
EF
BF
=
1
2
,E,G分別是AD,ED的中點,若△EFG的面積為1,則△ABC的面積是
18
18

查看答案和解析>>

同步練習冊答案